toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bhaskar Chakraborty; Michael Holte; Thomas B. Moeslund; Jordi Gonzalez edit   pdf
doi  openurl
  Title Selective Spatio-Temporal Interest Points Type (down) Journal Article
  Year 2012 Publication Computer Vision and Image Understanding Abbreviated Journal CVIU  
  Volume 116 Issue 3 Pages 396-410  
  Keywords  
  Abstract Recent progress in the field of human action recognition points towards the use of Spatio-TemporalInterestPoints (STIPs) for local descriptor-based recognition strategies. In this paper, we present a novel approach for robust and selective STIP detection, by applying surround suppression combined with local and temporal constraints. This new method is significantly different from existing STIP detection techniques and improves the performance by detecting more repeatable, stable and distinctive STIPs for human actors, while suppressing unwanted background STIPs. For action representation we use a bag-of-video words (BoV) model of local N-jet features to build a vocabulary of visual-words. To this end, we introduce a novel vocabulary building strategy by combining spatial pyramid and vocabulary compression techniques, resulting in improved performance and efficiency. Action class specific Support Vector Machine (SVM) classifiers are trained for categorization of human actions. A comprehensive set of experiments on popular benchmark datasets (KTH and Weizmann), more challenging datasets of complex scenes with background clutter and camera motion (CVC and CMU), movie and YouTube video clips (Hollywood 2 and YouTube), and complex scenes with multiple actors (MSR I and Multi-KTH), validates our approach and show state-of-the-art performance. Due to the unavailability of ground truth action annotation data for the Multi-KTH dataset, we introduce an actor specific spatio-temporal clustering of STIPs to address the problem of automatic action annotation of multiple simultaneous actors. Additionally, we perform cross-data action recognition by training on source datasets (KTH and Weizmann) and testing on completely different and more challenging target datasets (CVC, CMU, MSR I and Multi-KTH). This documents the robustness of our proposed approach in the realistic scenario, using separate training and test datasets, which in general has been a shortcoming in the performance evaluation of human action recognition techniques.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1077-3142 ISBN Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number Admin @ si @ CHM2012 Serial 1806  
Permanent link to this record
 

 
Author Noha Elfiky; Fahad Shahbaz Khan; Joost Van de Weijer; Jordi Gonzalez edit   pdf
url  doi
openurl 
  Title Discriminative Compact Pyramids for Object and Scene Recognition Type (down) Journal Article
  Year 2012 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 45 Issue 4 Pages 1627-1636  
  Keywords  
  Abstract Spatial pyramids have been successfully applied to incorporating spatial information into bag-of-words based image representation. However, a major drawback is that it leads to high dimensional image representations. In this paper, we present a novel framework for obtaining compact pyramid representation. First, we investigate the usage of the divisive information theoretic feature clustering (DITC) algorithm in creating a compact pyramid representation. In many cases this method allows us to reduce the size of a high dimensional pyramid representation up to an order of magnitude with little or no loss in accuracy. Furthermore, comparison to clustering based on agglomerative information bottleneck (AIB) shows that our method obtains superior results at significantly lower computational costs. Moreover, we investigate the optimal combination of multiple features in the context of our compact pyramid representation. Finally, experiments show that the method can obtain state-of-the-art results on several challenging data sets.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-3203 ISBN Medium  
  Area Expedition Conference  
  Notes ISE; CAT;CIC Approved no  
  Call Number Admin @ si @ EKW2012 Serial 1807  
Permanent link to this record
 

 
Author Susana Alvarez; Anna Salvatella; Maria Vanrell; Xavier Otazu edit   pdf
url  doi
openurl 
  Title Low-dimensional and Comprehensive Color Texture Description Type (down) Journal Article
  Year 2012 Publication Computer Vision and Image Understanding Abbreviated Journal CVIU  
  Volume 116 Issue I Pages 54-67  
  Keywords  
  Abstract Image retrieval can be dealt by combining standard descriptors, such as those of MPEG-7, which are defined independently for each visual cue (e.g. SCD or CLD for Color, HTD for texture or EHD for edges).
A common problem is to combine similarities coming from descriptors representing different concepts in different spaces. In this paper we propose a color texture description that bypasses this problem from its inherent definition. It is based on a low dimensional space with 6 perceptual axes. Texture is described in a 3D space derived from a direct implementation of the original Julesz’s Texton theory and color is described in a 3D perceptual space. This early fusion through the blob concept in these two bounded spaces avoids the problem and allows us to derive a sparse color-texture descriptor that achieves similar performance compared to MPEG-7 in image retrieval. Moreover, our descriptor presents comprehensive qualities since it can also be applied either in segmentation or browsing: (a) a dense image representation is defined from the descriptor showing a reasonable performance in locating texture patterns included in complex images; and (b) a vocabulary of basic terms is derived to build an intermediate level descriptor in natural language improving browsing by bridging semantic gap
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1077-3142 ISBN Medium  
  Area Expedition Conference  
  Notes CAT;CIC Approved no  
  Call Number Admin @ si @ ASV2012 Serial 1827  
Permanent link to this record
 

 
Author Carolina Malagelada; F.De Lorio; Santiago Segui; S. Mendez; Michal Drozdzal; Jordi Vitria; Petia Radeva; J.Santos; Anna Accarino; Juan R. Malagelada; Fernando Azpiroz edit   pdf
doi  openurl
  Title Functional gut disorders or disordered gut function? Small bowel dysmotility evidenced by an original technique Type (down) Journal Article
  Year 2012 Publication Neurogastroenterology & Motility Abbreviated Journal NEUMOT  
  Volume 24 Issue 3 Pages 223-230  
  Keywords capsule endoscopy;computer vision analysis;machine learning technique;small bowel motility  
  Abstract JCR Impact Factor 2010: 3.349
Background This study aimed to determine the proportion of cases with abnormal intestinal motility among patients with functional bowel disorders. To this end, we applied an original method, previously developed in our laboratory, for analysis of endoluminal images obtained by capsule endoscopy. This novel technology is based on computer vision and machine learning techniques.
 Methods The endoscopic capsule (Pillcam SB1; Given Imaging, Yokneam, Israel) was administered to 80 patients with functional bowel disorders and 70 healthy subjects. Endoluminal image analysis was performed with a computer vision program developed for the evaluation of contractile events (luminal occlusions and radial wrinkles), non-contractile patterns (open tunnel and smooth wall patterns), type of content (secretions, chyme) and motion of wall and contents. Normality range and discrimination of abnormal cases were established by a machine learning technique. Specifically, an iterative classifier (one-class support vector machine) was applied in a random population of 50 healthy subjects as a training set and the remaining subjects (20 healthy subjects and 80 patients) as a test set.
 Key Results The classifier identified as abnormal 29% of patients with functional diseases of the bowel (23 of 80), and as normal 97% of healthy subjects (68 of 70) (P < 0.05 by chi-squared test). Patients identified as abnormal clustered in two groups, which exhibited either a hyper- or a hypodynamic motility pattern. The motor behavior was unrelated to clinical features.
Conclusions &  Inferences With appropriate methodology, abnormal intestinal motility can be demonstrated in a significant proportion of patients with functional bowel disorders, implying a pathologic disturbance of gut physiology.
 
  Address  
  Corporate Author Thesis  
  Publisher Wiley Online Library Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; OR; MV Approved no  
  Call Number Admin @ si @ MLS2012 Serial 1830  
Permanent link to this record
 

 
Author Mohammad Rouhani; Angel Sappa edit   pdf
doi  openurl
  Title Implicit Polynomial Representation through a Fast Fitting Error Estimation Type (down) Journal Article
  Year 2012 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 21 Issue 4 Pages 2089-2098  
  Keywords  
  Abstract Impact Factor
This paper presents a simple distance estimation for implicit polynomial fitting. It is computed as the height of a simplex built between the point and the surface (i.e., a triangle in 2-D or a tetrahedron in 3-D), which is used as a coarse but reliable estimation of the orthogonal distance. The proposed distance can be described as a function of the coefficients of the implicit polynomial. Moreover, it is differentiable and has a smooth behavior . Hence, it can be used in any gradient-based optimization. In this paper, its use in a Levenberg-Marquardt framework is shown, which is particularly devoted for nonlinear least squares problems. The proposed estimation is a generalization of the gradient-based distance estimation, which is widely used in the literature. Experimental results, both in 2-D and 3-D data sets, are provided. Comparisons with state-of-the-art techniques are presented, showing the advantages of the proposed approach.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1057-7149 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ RoS2012b; ADAS @ adas @ Serial 1937  
Permanent link to this record
 

 
Author J. Stöttinger; A. Hanbury; N. Sebe; Theo Gevers edit  doi
openurl 
  Title Spars Color Interest Points for Image Retrieval and Object Categorization Type (down) Journal Article
  Year 2012 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 21 Issue 5 Pages 2681-2692  
  Keywords  
  Abstract Impact factor 2010: 2.92
IF 2011/2012?: 3.32
Interest point detection is an important research area in the field of image processing and computer vision. In particular, image retrieval and object categorization heavily rely on interest point detection from which local image descriptors are computed for image matching. In general, interest points are based on luminance, and color has been largely ignored. However, the use of color increases the distinctiveness of interest points. The use of color may therefore provide selective search reducing the total number of interest points used for image matching. This paper proposes color interest points for sparse image representation. To reduce the sensitivity to varying imaging conditions, light-invariant interest points are introduced. Color statistics based on occurrence probability lead to color boosted points, which are obtained through saliency-based feature selection. Furthermore, a principal component analysis-based scale selection method is proposed, which gives a robust scale estimation per interest point. From large-scale experiments, it is shown that the proposed color interest point detector has higher repeatability than a luminance-based one. Furthermore, in the context of image retrieval, a reduced and predictable number of color features show an increase in performance compared to state-of-the-art interest points. Finally, in the context of object recognition, for the Pascal VOC 2007 challenge, our method gives comparable performance to state-of-the-art methods using only a small fraction of the features, reducing the computing time considerably.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1057-7149 ISBN Medium  
  Area Expedition Conference  
  Notes ALTRES;ISE Approved no  
  Call Number Admin @ si @ SHS2012 Serial 1847  
Permanent link to this record
 

 
Author R. Valenti; N. Sebe; Theo Gevers edit  url
doi  openurl
  Title What are you looking at? Improving Visual gaze Estimation by Saliency Type (down) Journal Article
  Year 2012 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
  Volume 98 Issue 3 Pages 324-334  
  Keywords  
  Abstract Impact factor 2010: 5.15
Impact factor 2011/12?: 5.36
In this paper we present a novel mechanism to obtain enhanced gaze estimation for subjects looking at a scene or an image. The system makes use of prior knowledge about the scene (e.g. an image on a computer screen), to define a probability map of the scene the subject is gazing at, in order to find the most probable location. The proposed system helps in correcting the fixations which are erroneously estimated by the gaze estimation device by employing a saliency framework to adjust the resulting gaze point vector. The system is tested on three scenarios: using eye tracking data, enhancing a low accuracy webcam based eye tracker, and using a head pose tracker. The correlation between the subjects in the commercial eye tracking data is improved by an average of 13.91%. The correlation on the low accuracy eye gaze tracker is improved by 59.85%, and for the head pose tracker we obtain an improvement of 10.23%. These results show the potential of the system as a way to enhance and self-calibrate different visual gaze estimation systems.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0920-5691 ISBN Medium  
  Area Expedition Conference  
  Notes ALTRES;ISE Approved no  
  Call Number Admin @ si @ VSG2012 Serial 1848  
Permanent link to this record
 

 
Author R. Valenti; Theo Gevers edit  doi
openurl 
  Title Accurate Eye Center Location through Invariant Isocentric Patterns Type (down) Journal Article
  Year 2012 Publication IEEE Transaction on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 34 Issue 9 Pages 1785-1798  
  Keywords  
  Abstract Impact factor 2010: 5.308
Impact factor 2011/12?: 5.96
Locating the center of the eyes allows for valuable information to be captured and used in a wide range of applications. Accurate eye center location can be determined using commercial eye-gaze trackers, but additional constraints and expensive hardware make these existing solutions unattractive and impossible to use on standard (i.e., visible wavelength), low-resolution images of eyes. Systems based solely on appearance are proposed in the literature, but their accuracy does not allow us to accurately locate and distinguish eye centers movements in these low-resolution settings. Our aim is to bridge this gap by locating the center of the eye within the area of the pupil on low-resolution images taken from a webcam or a similar device. The proposed method makes use of isophote properties to gain invariance to linear lighting changes (contrast and brightness), to achieve in-plane rotational invariance, and to keep low-computational costs. To further gain scale invariance, the approach is applied to a scale space pyramid. In this paper, we extensively test our approach for its robustness to changes in illumination, head pose, scale, occlusion, and eye rotation. We demonstrate that our system can achieve a significant improvement in accuracy over state-of-the-art techniques for eye center location in standard low-resolution imagery.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0162-8828 ISBN Medium  
  Area Expedition Conference  
  Notes ALTRES;ISE Approved no  
  Call Number Admin @ si @ VaG 2012a Serial 1849  
Permanent link to this record
 

 
Author Arjan Gijsenij; Theo Gevers; Joost Van de Weijer edit   pdf
url  doi
openurl 
  Title Improving Color Constancy by Photometric Edge Weighting Type (down) Journal Article
  Year 2012 Publication IEEE Transaction on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 34 Issue 5 Pages 918-929  
  Keywords  
  Abstract : Edge-based color constancy methods make use of image derivatives to estimate the illuminant. However, different edge types exist in real-world images such as material, shadow and highlight edges. These different edge types may have a distinctive influence on the performance of the illuminant estimation. Therefore, in this paper, an extensive analysis is provided of different edge types on the performance of edge-based color constancy methods. First, an edge-based taxonomy is presented classifying edge types based on their photometric properties (e.g. material, shadow-geometry and highlights). Then, a performance evaluation of edge-based color constancy is provided using these different edge types. From this performance evaluation it is derived that specular and shadow edge types are more valuable than material edges for the estimation of the illuminant. To this end, the (iterative) weighted Grey-Edge algorithm is proposed in which these edge types are more emphasized for the estimation of the illuminant. Images that are recorded under controlled circumstances demonstrate that the proposed iterative weighted Grey-Edge algorithm based on highlights reduces the median angular error with approximately $25\%$. In an uncontrolled environment, improvements in angular error up to $11\%$ are obtained with respect to regular edge-based color constancy.  
  Address Los Alamitos; CA; USA;  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0162-8828 ISBN Medium  
  Area Expedition Conference  
  Notes CIC;ISE Approved no  
  Call Number Admin @ si @ GGW2012 Serial 1850  
Permanent link to this record
 

 
Author R. Valenti; Theo Gevers edit  doi
openurl 
  Title Combining Head Pose and Eye Location Information for Gaze Estimation Type (down) Journal Article
  Year 2012 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 21 Issue 2 Pages 802-815  
  Keywords  
  Abstract Impact factor 2010: 2.92
Impact factor 2011/12?: 3.32
Head pose and eye location for gaze estimation have been separately studied in numerous works in the literature. Previous research shows that satisfactory accuracy in head pose and eye location estimation can be achieved in constrained settings. However, in the presence of nonfrontal faces, eye locators are not adequate to accurately locate the center of the eyes. On the other hand, head pose estimation techniques are able to deal with these conditions; hence, they may be suited to enhance the accuracy of eye localization. Therefore, in this paper, a hybrid scheme is proposed to combine head pose and eye location information to obtain enhanced gaze estimation. To this end, the transformation matrix obtained from the head pose is used to normalize the eye regions, and in turn, the transformation matrix generated by the found eye location is used to correct the pose estimation procedure. The scheme is designed to enhance the accuracy of eye location estimations, particularly in low-resolution videos, to extend the operative range of the eye locators, and to improve the accuracy of the head pose tracker. These enhanced estimations are then combined to obtain a novel visual gaze estimation system, which uses both eye location and head information to refine the gaze estimates. From the experimental results, it can be derived that the proposed unified scheme improves the accuracy of eye estimations by 16% to 23%. Furthermore, it considerably extends its operating range by more than 15° by overcoming the problems introduced by extreme head poses. Moreover, the accuracy of the head pose tracker is improved by 12% to 24%. Finally, the experimentation on the proposed combined gaze estimation system shows that it is accurate (with a mean error between 2° and 5°) and that it can be used in cases where classic approaches would fail without imposing restraints on the position of the head.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1057-7149 ISBN Medium  
  Area Expedition Conference  
  Notes ALTRES;ISE Approved no  
  Call Number Admin @ si @ VaG 2012b Serial 1851  
Permanent link to this record
 

 
Author Arjan Gijsenij; R. Lu; Theo Gevers; De Xu edit  doi
openurl 
  Title Color Constancy for Multiple Light Source Type (down) Journal Article
  Year 2012 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 21 Issue 2 Pages 697-707  
  Keywords  
  Abstract Impact factor 2010: 2.92
Impact factor 2011/2012?: 3.32
Color constancy algorithms are generally based on the simplifying assumption that the spectral distribution of a light source is uniform across scenes. However, in reality, this assumption is often violated due to the presence of multiple light sources. In this paper, we will address more realistic scenarios where the uniform light-source assumption is too restrictive. First, a methodology is proposed to extend existing algorithms by applying color constancy locally to image patches, rather than globally to the entire image. After local (patch-based) illuminant estimation, these estimates are combined into more robust estimations, and a local correction is applied based on a modified diagonal model. Quantitative and qualitative experiments on spectral and real images show that the proposed methodology reduces the influence of two light sources simultaneously present in one scene. If the chromatic difference between these two illuminants is more than 1° , the proposed framework outperforms algorithms based on the uniform light-source assumption (with error-reduction up to approximately 30%). Otherwise, when the chromatic difference is less than 1° and the scene can be considered to contain one (approximately) uniform light source, the performance of the proposed method framework is similar to global color constancy methods.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1057-7149 ISBN Medium  
  Area Expedition Conference  
  Notes ALTRES;ISE Approved no  
  Call Number Admin @ si @ GLG2012a Serial 1852  
Permanent link to this record
 

 
Author Hamdi Dibeklioglu; Albert Ali Salah; Theo Gevers edit  doi
openurl 
  Title A Statistical Method for 2D Facial Landmarking Type (down) Journal Article
  Year 2012 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 21 Issue 2 Pages 844-858  
  Keywords  
  Abstract IF = 3.32
Many facial-analysis approaches rely on robust and accurate automatic facial landmarking to correctly function. In this paper, we describe a statistical method for automatic facial-landmark localization. Our landmarking relies on a parsimonious mixture model of Gabor wavelet features, computed in coarse-to-fine fashion and complemented with a shape prior. We assess the accuracy and the robustness of the proposed approach in extensive cross-database conditions conducted on four face data sets (Face Recognition Grand Challenge, Cohn-Kanade, Bosphorus, and BioID). Our method has 99.33% accuracy on the Bosphorus database and 97.62% accuracy on the BioID database on the average, which improves the state of the art. We show that the method is not significantly affected by low-resolution images, small rotations, facial expressions, and natural occlusions such as beard and mustache. We further test the goodness of the landmarks in a facial expression recognition application and report landmarking-induced improvement over baseline on two separate databases for video-based expression recognition (Cohn-Kanade and BU-4DFE).
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1057-7149 ISBN Medium  
  Area Expedition Conference  
  Notes ALTRES;ISE Approved no  
  Call Number Admin @ si @ DSG 2012 Serial 1853  
Permanent link to this record
 

 
Author Alberto Hidalgo; Ferran Poveda; Enric Marti;Debora Gil;Albert Andaluz; Francesc Carreras; Manuel Ballester edit   pdf
url  doi
openurl 
  Title Evidence of continuous helical structure of the cardiac ventricular anatomy assessed by diffusion tensor imaging magnetic resonance multiresolution tractography Type (down) Journal Article
  Year 2012 Publication European Radiology Abbreviated Journal ECR  
  Volume 3 Issue 1 Pages 361-362  
  Keywords  
  Abstract Deep understanding of myocardial structure linking morphology and func- tion of the heart would unravel crucial knowledge for medical and surgical clinical procedures and studies. Diffusion tensor MRI provides a discrete measurement of the 3D arrangement of myocardial fibres by the observation of local anisotropic
diffusion of water molecules in biological tissues. In this work, we present a multi- scale visualisation technique based on DT-MRI streamlining capable of uncovering additional properties of the architectural organisation of the heart. Methods and Materials: We selected the John Hopkins University (JHU) Canine Heart Dataset, where the long axis cardiac plane is aligned with the scanner’s Z- axis. Their equipment included a 4-element passed array coil emitting a 1.5 T. For DTI acquisition, a 3D-FSE sequence is apply. We used 200 seeds for full-scale tractography, while we applied a MIP mapping technique for simplified tractographic reconstruction. In this case, we reduced each DTI 3D volume dimensions by order- two magnitude before streamlining.
Our simplified tractographic reconstruction method keeps the main geometric features of fibres, allowing for an easier identification of their global morphological disposition, including the ventricular basal ring. Moreover, we noticed a clearly visible helical disposition of the myocardial fibres, in line with the helical myocardial band ventricular structure described by Torrent-Guasp. Finally, our simplified visualisation with single tracts identifies the main segments of the helical ventricular architecture.
DT-MRI makes possible the identification of a continuous helical architecture of the myocardial fibres, which validates Torrent-Guasp’s helical myocardial band ventricular anatomical model.
 
  Address Viena, Austria  
  Corporate Author Thesis  
  Publisher Springer Link Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1869-4101 ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number IAM @ iam @ HPM2012 Serial 1858  
Permanent link to this record
 

 
Author Fahad Shahbaz Khan; Joost Van de Weijer; Maria Vanrell edit   pdf
url  doi
openurl 
  Title Modulating Shape Features by Color Attention for Object Recognition Type (down) Journal Article
  Year 2012 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
  Volume 98 Issue 1 Pages 49-64  
  Keywords  
  Abstract Bag-of-words based image representation is a successful approach for object recognition. Generally, the subsequent stages of the process: feature detection,feature description, vocabulary construction and image representation are performed independent of the intentioned object classes to be detected. In such a framework, it was found that the combination of different image cues, such as shape and color, often obtains below expected results. This paper presents a novel method for recognizing object categories when using ultiple cues by separately processing the shape and color cues and combining them by modulating the shape features by category specific color attention. Color is used to compute bottom up and top-down attention maps. Subsequently, these color attention maps are used to modulate the weights of the shape features. In regions with higher attention shape features are given more weight than in regions with low attention. We compare our approach with existing methods that combine color and shape cues on five data sets containing varied importance of both cues, namely, Soccer (color predominance), Flower (color and hape parity), PASCAL VOC 2007 and 2009 (shape predominance) and Caltech-101 (color co-interference). The experiments clearly demonstrate that in all five data sets our proposed framework significantly outperforms existing methods for combining color and shape information.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Netherlands Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0920-5691 ISBN Medium  
  Area Expedition Conference  
  Notes CIC Approved no  
  Call Number Admin @ si @ KWV2012 Serial 1864  
Permanent link to this record
 

 
Author Jose Carlos Rubio; Joan Serrat; Antonio Lopez; Daniel Ponsa edit   pdf
url  doi
openurl 
  Title Multiple target tracking for intelligent headlights control Type (down) Journal Article
  Year 2012 Publication IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS  
  Volume 13 Issue 2 Pages 594-605  
  Keywords Intelligent Headlights  
  Abstract Intelligent vehicle lighting systems aim at automatically regulating the headlights' beam to illuminate as much of the road ahead as possible while avoiding dazzling other drivers. A key component of such a system is computer vision software that is able to distinguish blobs due to vehicles' headlights and rear lights from those due to road lamps and reflective elements such as poles and traffic signs. In a previous work, we have devised a set of specialized supervised classifiers to make such decisions based on blob features related to its intensity and shape. Despite the overall good performance, there remain challenging that have yet to be solved: notably, faint and tiny blobs corresponding to quite distant vehicles. In fact, for such distant blobs, classification decisions can be taken after observing them during a few frames. Hence, incorporating tracking could improve the overall lighting system performance by enforcing the temporal consistency of the classifier decision. Accordingly, this paper focuses on the problem of constructing blob tracks, which is actually one of multiple-target tracking (MTT), but under two special conditions: We have to deal with frequent occlusions, as well as blob splits and merges. We approach it in a novel way by formulating the problem as a maximum a posteriori inference on a Markov random field. The qualitative (in video form) and quantitative evaluation of our new MTT method shows good tracking results. In addition, we will also see that the classification performance of the problematic blobs improves due to the proposed MTT algorithm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1524-9050 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ RLP2012; ADAS @ adas @ rsl2012g Serial 1877  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: