toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) R. Valenti; Theo Gevers edit  doi
openurl 
  Title Combining Head Pose and Eye Location Information for Gaze Estimation Type Journal Article
  Year 2012 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 21 Issue 2 Pages 802-815  
  Keywords  
  Abstract Impact factor 2010: 2.92
Impact factor 2011/12?: 3.32
Head pose and eye location for gaze estimation have been separately studied in numerous works in the literature. Previous research shows that satisfactory accuracy in head pose and eye location estimation can be achieved in constrained settings. However, in the presence of nonfrontal faces, eye locators are not adequate to accurately locate the center of the eyes. On the other hand, head pose estimation techniques are able to deal with these conditions; hence, they may be suited to enhance the accuracy of eye localization. Therefore, in this paper, a hybrid scheme is proposed to combine head pose and eye location information to obtain enhanced gaze estimation. To this end, the transformation matrix obtained from the head pose is used to normalize the eye regions, and in turn, the transformation matrix generated by the found eye location is used to correct the pose estimation procedure. The scheme is designed to enhance the accuracy of eye location estimations, particularly in low-resolution videos, to extend the operative range of the eye locators, and to improve the accuracy of the head pose tracker. These enhanced estimations are then combined to obtain a novel visual gaze estimation system, which uses both eye location and head information to refine the gaze estimates. From the experimental results, it can be derived that the proposed unified scheme improves the accuracy of eye estimations by 16% to 23%. Furthermore, it considerably extends its operating range by more than 15° by overcoming the problems introduced by extreme head poses. Moreover, the accuracy of the head pose tracker is improved by 12% to 24%. Finally, the experimentation on the proposed combined gaze estimation system shows that it is accurate (with a mean error between 2° and 5°) and that it can be used in cases where classic approaches would fail without imposing restraints on the position of the head.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1057-7149 ISBN Medium  
  Area Expedition Conference  
  Notes ALTRES;ISE Approved no  
  Call Number Admin @ si @ VaG 2012b Serial 1851  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: