toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Cristina Palmero; Albert Clapes; Chris Bahnsen; Andreas Møgelmose; Thomas B. Moeslund; Sergio Escalera edit   pdf
doi  openurl
  Title (down) Multi-modal RGB-Depth-Thermal Human Body Segmentation Type Journal Article
  Year 2016 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
  Volume 118 Issue 2 Pages 217-239  
  Keywords Human body segmentation; RGB ; Depth Thermal  
  Abstract This work addresses the problem of human body segmentation from multi-modal visual cues as a first stage of automatic human behavior analysis. We propose a novel RGB–depth–thermal dataset along with a multi-modal segmentation baseline. The several modalities are registered using a calibration device and a registration algorithm. Our baseline extracts regions of interest using background subtraction, defines a partitioning of the foreground regions into cells, computes a set of image features on those cells using different state-of-the-art feature extractions, and models the distribution of the descriptors per cell using probabilistic models. A supervised learning algorithm then fuses the output likelihoods over cells in a stacked feature vector representation. The baseline, using Gaussian mixture models for the probabilistic modeling and Random Forest for the stacked learning, is superior to other state-of-the-art methods, obtaining an overlap above 75 % on the novel dataset when compared to the manually annotated ground-truth of human segmentations.  
  Address  
  Corporate Author Thesis  
  Publisher Springer US Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB; Approved no  
  Call Number Admin @ si @ PCB2016 Serial 2767  
Permanent link to this record
 

 
Author Andres Mafla; Sounak Dey; Ali Furkan Biten; Lluis Gomez; Dimosthenis Karatzas edit   pdf
doi  openurl
  Title (down) Multi-modal reasoning graph for scene-text based fine-grained image classification and retrieval Type Conference Article
  Year 2021 Publication IEEE Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages 4022-4032  
  Keywords  
  Abstract  
  Address Virtual; January 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ MDB2021 Serial 3491  
Permanent link to this record
 

 
Author Alejandro Gonzalez Alzate edit  isbn
openurl 
  Title (down) Multi-modal Pedestrian Detection Type Book Whole
  Year 2015 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Pedestrian detection continues to be an extremely challenging problem in real scenarios, in which situations like illumination changes, noisy images, unexpected objects, uncontrolled scenarios and variant appearance of objects occur constantly. All these problems force the development of more robust detectors for relevant applications like vision-based autonomous vehicles, intelligent surveillance, and pedestrian tracking for behavior analysis. Most reliable vision-based pedestrian detectors base their decision on features extracted using a single sensor capturing complementary features, e.g., appearance, and texture. These features usually are extracted from the current frame, ignoring temporal information, or including it in a post process step e.g., tracking or temporal coherence. Taking into account these issues we formulate the following question: can we generate more robust pedestrian detectors by introducing new information sources in the feature extraction step?
In order to answer this question we develop different approaches for introducing new information sources to well-known pedestrian detectors. We start by the inclusion of temporal information following the Stacked Sequential Learning (SSL) paradigm which suggests that information extracted from the neighboring samples in a sequence can improve the accuracy of a base classifier.
We then focus on the inclusion of complementary information from different sensors like 3D point clouds (LIDAR – depth), far infrared images (FIR), or disparity maps (stereo pair cameras). For this end we develop a multi-modal framework in which information from different sensors is used for increasing detection accuracy (by increasing information redundancy). Finally we propose a multi-view pedestrian detector, this multi-view approach splits the detection problem in n sub-problems.
Each sub-problem will detect objects in a given specific view reducing in that way the variability problem faced when a single detectors is used for the whole problem. We show that these approaches obtain competitive results with other state-of-the-art methods but instead of design new features, we reuse existing ones boosting their performance.
 
  Address November 2015  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor David Vazquez;Antonio Lopez;  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-943427-7-6 Medium  
  Area Expedition Conference  
  Notes ADAS; 600.076 Approved no  
  Call Number Admin @ si @ Gon2015 Serial 2706  
Permanent link to this record
 

 
Author Sergio Escalera edit   pdf
url  openurl
  Title (down) Multi-Modal Human Behaviour Analysis from Visual Data Sources Type Journal
  Year 2013 Publication ERCIM News journal Abbreviated Journal ERCIM  
  Volume 95 Issue Pages 21-22  
  Keywords  
  Abstract The Human Pose Recovery and Behaviour Analysis group (HuPBA), University of Barcelona, is developing a line of research on multi-modal analysis of humans in visual data. The novel technology is being applied in several scenarios with high social impact, including sign language recognition, assisted technology and supported diagnosis for the elderly and people with mental/physical disabilities, fitness conditioning, and Human Computer Interaction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-4981 ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ Esc2013 Serial 2361  
Permanent link to this record
 

 
Author Sergio Escalera; Jordi Gonzalez; Xavier Baro; Miguel Reyes; Oscar Lopes; Isabelle Guyon; V. Athitsos; Hugo Jair Escalante edit   pdf
doi  isbn
openurl 
  Title (down) Multi-modal Gesture Recognition Challenge 2013: Dataset and Results Type Conference Article
  Year 2013 Publication 15th ACM International Conference on Multimodal Interaction Abbreviated Journal  
  Volume Issue Pages 445-452  
  Keywords  
  Abstract The recognition of continuous natural gestures is a complex and challenging problem due to the multi-modal nature of involved visual cues (e.g. fingers and lips movements, subtle facial expressions, body pose, etc.), as well as technical limitations such as spatial and temporal resolution and unreliable
depth cues. In order to promote the research advance on this field, we organized a challenge on multi-modal gesture recognition. We made available a large video database of 13; 858 gestures from a lexicon of 20 Italian gesture categories recorded with a KinectTM camera, providing the audio, skeletal model, user mask, RGB and depth images. The focus of the challenge was on user independent multiple gesture learning. There are no resting positions and the gestures are performed in continuous sequences lasting 1-2 minutes, containing between 8 and 20 gesture instances in each sequence. As a result, the dataset contains around 1:720:800 frames. In addition to the 20 main gesture categories, ‘distracter’ gestures are included, meaning that additional audio
and gestures out of the vocabulary are included. The final evaluation of the challenge was defined in terms of the Levenshtein edit distance, where the goal was to indicate the real order of gestures within the sequence. 54 international teams participated in the challenge, and outstanding results
were obtained by the first ranked participants.
 
  Address Sidney; Australia; December 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4503-2129-7 Medium  
  Area Expedition Conference ICMI  
  Notes HUPBA; ISE; 600.063;MV Approved no  
  Call Number Admin @ si @ EGB2013 Serial 2373  
Permanent link to this record
 

 
Author Lichao Zhang; Martin Danelljan; Abel Gonzalez-Garcia; Joost Van de Weijer; Fahad Shahbaz Khan edit   pdf
url  doi
openurl 
  Title (down) Multi-Modal Fusion for End-to-End RGB-T Tracking Type Conference Article
  Year 2019 Publication IEEE International Conference on Computer Vision Workshops Abbreviated Journal  
  Volume Issue Pages 2252-2261  
  Keywords  
  Abstract We propose an end-to-end tracking framework for fusing the RGB and TIR modalities in RGB-T tracking. Our baseline tracker is DiMP (Discriminative Model Prediction), which employs a carefully designed target prediction network trained end-to-end using a discriminative loss. We analyze the effectiveness of modality fusion in each of the main components in DiMP, i.e. feature extractor, target estimation network, and classifier. We consider several fusion mechanisms acting at different levels of the framework, including pixel-level, feature-level and response-level. Our tracker is trained in an end-to-end manner, enabling the components to learn how to fuse the information from both modalities. As data to train our model, we generate a large-scale RGB-T dataset by considering an annotated RGB tracking dataset (GOT-10k) and synthesizing paired TIR images using an image-to-image translation approach. We perform extensive experiments on VOT-RGBT2019 dataset and RGBT210 dataset, evaluating each type of modality fusing on each model component. The results show that the proposed fusion mechanisms improve the performance of the single modality counterparts. We obtain our best results when fusing at the feature-level on both the IoU-Net and the model predictor, obtaining an EAO score of 0.391 on VOT-RGBT2019 dataset. With this fusion mechanism we achieve the state-of-the-art performance on RGBT210 dataset.  
  Address Seul; Corea; October 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCVW  
  Notes LAMP; 600.109; 600.141; 600.120 Approved no  
  Call Number Admin @ si @ ZDG2019 Serial 3279  
Permanent link to this record
 

 
Author Jun Wan; Guodong Guo; Sergio Escalera; Hugo Jair Escalante; Stan Z. Li edit  openurl
  Title (down) Multi-modal Face Presentation Attach Detection Type Book Whole
  Year 2020 Publication Synthesis Lectures on Computer Vision Abbreviated Journal  
  Volume 13 Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA Approved no  
  Call Number Admin @ si @ WGE2020 Serial 3440  
Permanent link to this record
 

 
Author Ajian Liu; Jun Wan; Sergio Escalera; Hugo Jair Escalante; Zichang Tan; Qi Yuan; Kai Wang; Chi Lin; Guodong Guo; Isabelle Guyon; Stan Z. Li edit   pdf
openurl 
  Title (down) Multi-Modal Face Anti-Spoofing Attack Detection Challenge at CVPR2019 Type Conference Article
  Year 2019 Publication IEEE International Conference on Computer Vision and Pattern Recognition-Workshop Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Anti-spoofing attack detection is critical to guarantee the security of face-based authentication and facial analysis systems. Recently, a multi-modal face anti-spoofing dataset, CASIA-SURF, has been released with the goal of boosting research in this important topic. CASIA-SURF is the largest public data set for facial anti-spoofing attack detection in terms of both, diversity and modalities: it comprises 1,000 subjects and 21,000 video samples. We organized a challenge around this novel resource to boost research in the subject. The Chalearn LAP multi-modal face anti-spoofing attack detection challenge attracted more than 300 teams for the development phase with a total of 13 teams qualifying for the final round. This paper presents an overview of the challenge, including its design, evaluation protocol and a summary of results. We analyze the top ranked solutions and draw conclusions derived from the competition. In addition we outline future work directions.  
  Address California; June 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes HuPBA; no proj Approved no  
  Call Number Admin @ si @ LWE2019 Serial 3329  
Permanent link to this record
 

 
Author Laura Lopez-Fuentes; Joost Van de Weijer; Marc Bolaños; Harald Skinnemoen edit   pdf
openurl 
  Title (down) Multi-modal Deep Learning Approach for Flood Detection Type Conference Article
  Year 2017 Publication MediaEval Benchmarking Initiative for Multimedia Evaluation Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract In this paper we propose a multi-modal deep learning approach to detect floods in social media posts. Social media posts normally contain some metadata and/or visual information, therefore in order to detect the floods we use this information. The model is based on a Convolutional Neural Network which extracts the visual features and a bidirectional Long Short-Term Memory network to extract the semantic features from the textual metadata. We validate the
method on images extracted from Flickr which contain both visual information and metadata and compare the results when using both, visual information only or metadata only. This work has been done in the context of the MediaEval Multimedia Satellite Task.
 
  Address Dublin; Ireland; September 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MediaEval  
  Notes LAMP; 600.084; 600.109; 600.120 Approved no  
  Call Number Admin @ si @ LWB2017a Serial 2974  
Permanent link to this record
 

 
Author Razieh Rastgoo; Kourosh Kiani; Sergio Escalera edit  doi
openurl 
  Title (down) Multi-Modal Deep Hand Sign Language Recognition in Still Images Using Restricted Boltzmann Machine Type Journal Article
  Year 2018 Publication Entropy Abbreviated Journal ENTROPY  
  Volume 20 Issue 11 Pages 809  
  Keywords hand sign language; deep learning; restricted Boltzmann machine (RBM); multi-modal; profoundly deaf; noisy image  
  Abstract In this paper, a deep learning approach, Restricted Boltzmann Machine (RBM), is used to perform automatic hand sign language recognition from visual data. We evaluate how RBM, as a deep generative model, is capable of generating the distribution of the input data for an enhanced recognition of unseen data. Two modalities, RGB and Depth, are considered in the model input in three forms: original image, cropped image, and noisy cropped image. Five crops of the input image are used and the hand of these cropped images are detected using Convolutional Neural Network (CNN). After that, three types of the detected hand images are generated for each modality and input to RBMs. The outputs of the RBMs for two modalities are fused in another RBM in order to recognize the output sign label of the input image. The proposed multi-modal model is trained on all and part of the American alphabet and digits of four publicly available datasets. We also evaluate the robustness of the proposal against noise. Experimental results show that the proposed multi-modal model, using crops and the RBM fusing methodology, achieves state-of-the-art results on Massey University Gesture Dataset 2012, American Sign Language (ASL). and Fingerspelling Dataset from the University of Surrey’s Center for Vision, Speech and Signal Processing, NYU, and ASL Fingerspelling A datasets.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ RKE2018 Serial 3198  
Permanent link to this record
 

 
Author Spencer Low; Oliver Nina; Angel Sappa; Erik Blasch; Nathan Inkawhich edit  url
doi  openurl
  Title (down) Multi-Modal Aerial View Object Classification Challenge Results-PBVS 2023 Type Conference Article
  Year 2023 Publication Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops Abbreviated Journal  
  Volume Issue Pages 412-421  
  Keywords  
  Abstract This paper presents the findings and results of the third edition of the Multi-modal Aerial View Object Classification (MAVOC) challenge in a detailed and comprehensive manner. The challenge consists of two tracks. The primary aim of both tracks is to encourage research into building recognition models that utilize both synthetic aperture radar (SAR) and electro-optical (EO) imagery. Participating teams are encouraged to develop multi-modal approaches that incorporate complementary information from both domains. While the 2021 challenge demonstrated the feasibility of combining both modalities, the 2022 challenge expanded on the capability of multi-modal models. The 2023 challenge introduces a refined version of the UNICORN dataset and demonstrates significant improvements made. The 2023 challenge adopts an updated UNIfied CO-incident Optical and Radar for recognitioN (UNICORN V2) dataset and competition format. Two tasks are featured: SAR classification and SAR + EO classification. In addition to measuring accuracy of models, we also introduce out-of-distribution measures to encourage model robustness.The majority of this paper is dedicated to discussing the top performing methods and evaluating their performance on our blind test set. It is worth noting that all of the top ten teams outperformed the Resnet-50 baseline. The top team for SAR classification achieved a 173% performance improvement over the baseline, while the top team for SAR + EO classification achieved a 175% improvement.  
  Address Vancouver; Canada; June 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes MSIAU Approved no  
  Call Number Admin @ si @ LNS2023b Serial 3915  
Permanent link to this record
 

 
Author Spencer Low; Oliver Nina; Angel Sappa; Erik Blasch; Nathan Inkawhich edit   pdf
url  doi
openurl 
  Title (down) Multi-Modal Aerial View Object Classification Challenge Results – PBVS 2022 Type Conference Article
  Year 2022 Publication IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) Abbreviated Journal  
  Volume Issue Pages 350-358  
  Keywords  
  Abstract This paper details the results and main findings of the second iteration of the Multi-modal Aerial View Object Classification (MAVOC) challenge. The primary goal of both MAVOC challenges is to inspire research into methods for building recognition models that utilize both synthetic aperture radar (SAR) and electro-optical (EO) imagery. Teams are encouraged to develop multi-modal approaches that incorporate complementary information from both domains. While the 2021 challenge showed a proof of concept that both modalities could be used together, the 2022 challenge focuses on the detailed multi-modal methods. The 2022 challenge uses the same UNIfied Coincident Optical and Radar for recognitioN (UNICORN) dataset and competition format that was used in 2021. Specifically, the challenge focuses on two tasks, (1) SAR classification and (2) SAR + EO classification. The bulk of this document is dedicated to discussing the top performing methods and describing their performance on our blind test set. Notably, all of the top ten teams outperform a Resnet-18 baseline. For SAR classification, the top team showed a 129% improvement over baseline and an 8% average improvement from the 2021 winner. The top team for SAR + EO classification shows a 165% improvement with a 32% average improvement over 2021.  
  Address New Orleans; USA; June 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes MSIAU Approved no  
  Call Number Admin @ si @ LNS2022 Serial 3768  
Permanent link to this record
 

 
Author Spencer Low; Oliver Nina; Angel Sappa; Erik Blasch; Nathan Inkawhich edit  url
doi  openurl
  Title (down) Multi-Modal Aerial View Image Challenge: Translation From Synthetic Aperture Radar to Electro-Optical Domain Results-PBVS 2023 Type Conference Article
  Year 2023 Publication Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops Abbreviated Journal  
  Volume Issue Pages 515-523  
  Keywords  
  Abstract This paper unveils the discoveries and outcomes of the inaugural iteration of the Multi-modal Aerial View Image Challenge (MAVIC) aimed at image translation. The primary objective of this competition is to stimulate research efforts towards the development of models capable of translating co-aligned images between multiple modalities. To accomplish the task of image translation, the competition utilizes images obtained from both synthetic aperture radar (SAR) and electro-optical (EO) sources. Specifically, the challenge centers on the translation from the SAR modality to the EO modality, an area of research that has garnered attention. The inaugural challenge demonstrates the feasibility of the task. The dataset utilized in this challenge is derived from the UNIfied COincident Optical and Radar for recognitioN (UNICORN) dataset. We introduce an new version of the UNICORN dataset that is focused on enabling the sensor translation task. Performance evaluation is conducted using a combination of measures to ensure high fidelity and high accuracy translations.  
  Address Vancouver; Canada; June 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes MSIAU Approved no  
  Call Number Admin @ si @ LNS2023a Serial 3913  
Permanent link to this record
 

 
Author Rafael E. Rivadeneira; Angel Sappa; Boris X. Vintimilla edit   pdf
url  openurl
  Title (down) Multi-Image Super-Resolution for Thermal Images Type Conference Article
  Year 2022 Publication 17th International Conference on Computer Vision Theory and Applications (VISAPP 2022) Abbreviated Journal  
  Volume 4 Issue Pages 635-642  
  Keywords Thermal Images; Multi-view; Multi-frame; Super-Resolution; Deep Learning; Attention Block  
  Abstract This paper proposes a novel CNN architecture for the multi-thermal image super-resolution problem. In the proposed scheme, the multi-images are synthetically generated by downsampling and slightly shifting the given image; noise is also added to each of these synthesized images. The proposed architecture uses two
attention blocks paths to extract high-frequency details taking advantage of the large information extracted from multiple images of the same scene. Experimental results are provided, showing the proposed scheme has overcome the state-of-the-art approaches.
 
  Address Online; Feb 6-8, 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference VISAPP  
  Notes MSIAU; 601.349 Approved no  
  Call Number Admin @ si @ RSV2022a Serial 3690  
Permanent link to this record
 

 
Author Shida Beigpour; Christian Riess; Joost Van de Weijer; Elli Angelopoulou edit   pdf
doi  openurl
  Title (down) Multi-Illuminant Estimation with Conditional Random Fields Type Journal Article
  Year 2014 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 23 Issue 1 Pages 83-95  
  Keywords color constancy; CRF; multi-illuminant  
  Abstract Most existing color constancy algorithms assume uniform illumination. However, in real-world scenes, this is not often the case. Thus, we propose a novel framework for estimating the colors of multiple illuminants and their spatial distribution in the scene. We formulate this problem as an energy minimization task within a conditional random field over a set of local illuminant estimates. In order to quantitatively evaluate the proposed method, we created a novel data set of two-dominant-illuminant images comprised of laboratory, indoor, and outdoor scenes. Unlike prior work, our database includes accurate pixel-wise ground truth illuminant information. The performance of our method is evaluated on multiple data sets. Experimental results show that our framework clearly outperforms single illuminant estimators as well as a recently proposed multi-illuminant estimation approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1057-7149 ISBN Medium  
  Area Expedition Conference  
  Notes CIC; LAMP; 600.074; 600.079 Approved no  
  Call Number Admin @ si @ BRW2014 Serial 2451  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: