toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author David Aldavert; Marçal Rusiñol; Ricardo Toledo edit   pdf
doi  openurl
  Title Automatic Static/Variable Content Separation in Administrative Document Images Type Conference Article
  Year 2017 Publication 14th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract In this paper we present an automatic method for separating static and variable content from administrative document images. An alignment approach is able to unsupervisedly build probabilistic templates from a set of examples of the same document kind. Such templates define which is the likelihood of every pixel of being either static or variable content. In the extraction step, the same alignment technique is used to match
an incoming image with the template and to locate the positions where variable fields appear. We validate our approach on the public NIST Structured Tax Forms Dataset.
 
  Address Kyoto; Japan; November 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes (down) DAG; 600.084; 600.121 Approved no  
  Call Number Admin @ si @ ART2017 Serial 3001  
Permanent link to this record
 

 
Author Leonardo Galteri; Dena Bazazian; Lorenzo Seidenari; Marco Bertini; Andrew Bagdanov; Anguelos Nicolaou; Dimosthenis Karatzas; Alberto del Bimbo edit   pdf
doi  openurl
  Title Reading Text in the Wild from Compressed Images Type Conference Article
  Year 2017 Publication 1st International workshop on Egocentric Perception, Interaction and Computing Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Reading text in the wild is gaining attention in the computer vision community. Images captured in the wild are almost always compressed to varying degrees, depending on application context, and this compression introduces artifacts
that distort image content into the captured images. In this paper we investigate the impact these compression artifacts have on text localization and recognition in the wild. We also propose a deep Convolutional Neural Network (CNN) that can eliminate text-specific compression artifacts and which leads to an improvement in text recognition. Experimental results on the ICDAR-Challenge4 dataset demonstrate that compression artifacts have a significant
impact on text localization and recognition and that our approach yields an improvement in both – especially at high compression rates.
 
  Address Venice; Italy; October 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCV - EPIC  
  Notes (down) DAG; 600.084; 600.121 Approved no  
  Call Number Admin @ si @ GBS2017 Serial 3006  
Permanent link to this record
 

 
Author Masakazu Iwamura; Naoyuki Morimoto; Keishi Tainaka; Dena Bazazian; Lluis Gomez; Dimosthenis Karatzas edit  doi
openurl 
  Title ICDAR2017 Robust Reading Challenge on Omnidirectional Video Type Conference Article
  Year 2017 Publication 14th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Results of ICDAR 2017 Robust Reading Challenge on Omnidirectional Video are presented. This competition uses Downtown Osaka Scene Text (DOST) Dataset that was captured in Osaka, Japan with an omnidirectional camera. Hence, it consists of sequential images (videos) of different view angles. Regarding the sequential images as videos (video mode), two tasks of localisation and end-to-end recognition are prepared. Regarding them as a set of still images (still image mode), three tasks of localisation, cropped word recognition and end-to-end recognition are prepared. As the dataset has been captured in Japan, the dataset contains Japanese text but also include text consisting of alphanumeric characters (Latin text). Hence, a submitted result for each task is evaluated in three ways: using Japanese only ground truth (GT), using Latin only GT and using combined GTs of both. Finally, by the submission deadline, we have received two submissions in the text localisation task of the still image mode. We intend to continue the competition in the open mode. Expecting further submissions, in this report we provide baseline results in all the tasks in addition to the submissions from the community.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes (down) DAG; 600.084; 600.121 Approved no  
  Call Number Admin @ si @ IMT2017 Serial 3077  
Permanent link to this record
 

 
Author Albert Berenguel; Oriol Ramos Terrades; Josep Llados; Cristina Cañero edit  doi
openurl 
  Title Evaluation of Texture Descriptors for Validation of Counterfeit Documents Type Conference Article
  Year 2017 Publication 14th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 1237-1242  
  Keywords  
  Abstract This paper describes an exhaustive comparative analysis and evaluation of different existing texture descriptor algorithms to differentiate between genuine and counterfeit documents. We include in our experiments different categories of algorithms and compare them in different scenarios with several counterfeit datasets, comprising banknotes and identity documents. Computational time in the extraction of each descriptor is important because the final objective is to use it in a real industrial scenario. HoG and CNN based descriptors stands out statistically over the rest in terms of the F1-score/time ratio performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2379-2140 ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes (down) DAG; 600.061; 601.269; 600.097; 600.121 Approved no  
  Call Number Admin @ si @ BRL2017 Serial 3092  
Permanent link to this record
 

 
Author Albert Berenguel; Oriol Ramos Terrades; Josep Llados; Cristina Cañero edit   pdf
doi  openurl
  Title e-Counterfeit: a mobile-server platform for document counterfeit detection Type Conference Article
  Year 2017 Publication 14th IAPR International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract This paper presents a novel application to detect counterfeit identity documents forged by a scan-printing operation. Texture analysis approaches are proposed to extract validation features from security background that is usually printed in documents as IDs or banknotes. The main contribution of this work is the end-to-end mobile-server architecture, which provides a service for non-expert users and therefore can be used in several scenarios. The system also provides a crowdsourcing mode so labeled images can be gathered, generating databases for incremental training of the algorithms.  
  Address Kyoto; Japan; November 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes (down) DAG; 600.061; 600.097; 600.121 Approved no  
  Call Number Admin @ si @ BRL2018 Serial 3084  
Permanent link to this record
 

 
Author Ivet Rafegas; Maria Vanrell edit   pdf
openurl 
  Title Color representation in CNNs: parallelisms with biological vision Type Conference Article
  Year 2017 Publication ICCV Workshop on Mutual Benefits ofr Cognitive and Computer Vision Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Convolutional Neural Networks (CNNs) trained for object recognition tasks present representational capabilities approaching to primate visual systems [1]. This provides a computational framework to explore how image features
are efficiently represented. Here, we dissect a trained CNN
[2] to study how color is represented. We use a classical methodology used in physiology that is measuring index of selectivity of individual neurons to specific features. We use ImageNet Dataset [20] images and synthetic versions
of them to quantify color tuning properties of artificial neurons to provide a classification of the network population.
We conclude three main levels of color representation showing some parallelisms with biological visual systems: (a) a decomposition in a circular hue space to represent single color regions with a wider hue sampling beyond the first
layer (V2), (b) the emergence of opponent low-dimensional spaces in early stages to represent color edges (V1); and (c) a strong entanglement between color and shape patterns representing object-parts (e.g. wheel of a car), objectshapes (e.g. faces) or object-surrounds configurations (e.g. blue sky surrounding an object) in deeper layers (V4 or IT).
 
  Address Venice; Italy; October 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCV-MBCC  
  Notes (down) CIC; 600.087; 600.051 Approved no  
  Call Number Admin @ si @ RaV2017 Serial 2984  
Permanent link to this record
 

 
Author Ivet Rafegas; Javier Vazquez; Robert Benavente; Maria Vanrell; Susana Alvarez edit  url
openurl 
  Title Enhancing spatio-chromatic representation with more-than-three color coding for image description Type Journal Article
  Year 2017 Publication Journal of the Optical Society of America A Abbreviated Journal JOSA A  
  Volume 34 Issue 5 Pages 827-837  
  Keywords  
  Abstract Extraction of spatio-chromatic features from color images is usually performed independently on each color channel. Usual 3D color spaces, such as RGB, present a high inter-channel correlation for natural images. This correlation can be reduced using color-opponent representations, but the spatial structure of regions with small color differences is not fully captured in two generic Red-Green and Blue-Yellow channels. To overcome these problems, we propose a new color coding that is adapted to the specific content of each image. Our proposal is based on two steps: (a) setting the number of channels to the number of distinctive colors we find in each image (avoiding the problem of channel correlation), and (b) building a channel representation that maximizes contrast differences within each color channel (avoiding the problem of low local contrast). We call this approach more-than-three color coding (MTT) to enhance the fact that the number of channels is adapted to the image content. The higher color complexity an image has, the more channels can be used to represent it. Here we select distinctive colors as the most predominant in the image, which we call color pivots, and we build the new color coding using these color pivots as a basis. To evaluate the proposed approach we measure its efficiency in an image categorization task. We show how a generic descriptor improves its performance at the description level when applied on the MTT coding.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) CIC; 600.087 Approved no  
  Call Number Admin @ si @ RVB2017 Serial 2892  
Permanent link to this record
 

 
Author Bojana Gajic; Eduard Vazquez; Ramon Baldrich edit  url
openurl 
  Title Evaluation of Deep Image Descriptors for Texture Retrieval Type Conference Article
  Year 2017 Publication Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2017) Abbreviated Journal  
  Volume Issue Pages 251-257  
  Keywords Texture Representation; Texture Retrieval; Convolutional Neural Networks; Psychophysical Evaluation  
  Abstract The increasing complexity learnt in the layers of a Convolutional Neural Network has proven to be of great help for the task of classification. The topic has received great attention in recently published literature.
Nonetheless, just a handful of works study low-level representations, commonly associated with lower layers. In this paper, we explore recent findings which conclude, counterintuitively, the last layer of the VGG convolutional network is the best to describe a low-level property such as texture. To shed some light on this issue, we are proposing a psychophysical experiment to evaluate the adequacy of different layers of the VGG network for texture retrieval. Results obtained suggest that, whereas the last convolutional layer is a good choice for a specific task of classification, it might not be the best choice as a texture descriptor, showing a very poor performance on texture retrieval. Intermediate layers show the best performance, showing a good combination of basic filters, as in the primary visual cortex, and also a degree of higher level information to describe more complex textures.
 
  Address Porto, Portugal; 27 February – 1 March 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference VISIGRAPP  
  Notes (down) CIC; 600.087 Approved no  
  Call Number Admin @ si @ Serial 3710  
Permanent link to this record
 

 
Author Ivet Rafegas edit  isbn
openurl 
  Title Color in Visual Recognition: from flat to deep representations and some biological parallelisms Type Book Whole
  Year 2017 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Visual recognition is one of the main problems in computer vision that attempts to solve image understanding by deciding what objects are in images. This problem can be computationally solved by using relevant sets of visual features, such as edges, corners, color or more complex object parts. This thesis contributes to how color features have to be represented for recognition tasks.

Image features can be extracted following two different approaches. A first approach is defining handcrafted descriptors of images which is then followed by a learning scheme to classify the content (named flat schemes in Kruger et al. (2013). In this approach, perceptual considerations are habitually used to define efficient color features. Here we propose a new flat color descriptor based on the extension of color channels to boost the representation of spatio-chromatic contrast that surpasses state-of-the-art approaches. However, flat schemes present a lack of generality far away from the capabilities of biological systems. A second approach proposes evolving these flat schemes into a hierarchical process, like in the visual cortex. This includes an automatic process to learn optimal features. These deep schemes, and more specifically Convolutional Neural Networks (CNNs), have shown an impressive performance to solve various vision problems. However, there is a lack of understanding about the internal representation obtained, as a result of automatic learning. In this thesis we propose a new methodology to explore the internal representation of trained CNNs by defining the Neuron Feature as a visualization of the intrinsic features encoded in each individual neuron. Additionally, and inspired by physiological techniques, we propose to compute different neuron selectivity indexes (e.g., color, class, orientation or symmetry, amongst others) to label and classify the full CNN neuron population to understand learned representations.

Finally, using the proposed methodology, we show an in-depth study on how color is represented on a specific CNN, trained for object recognition, that competes with primate representational abilities (Cadieu et al (2014)). We found several parallelisms with biological visual systems: (a) a significant number of color selectivity neurons throughout all the layers; (b) an opponent and low frequency representation of color oriented edges and a higher sampling of frequency selectivity in brightness than in color in 1st layer like in V1; (c) a higher sampling of color hue in the second layer aligned to observed hue maps in V2; (d) a strong color and shape entanglement in all layers from basic features in shallower layers (V1 and V2) to object and background shapes in deeper layers (V4 and IT); and (e) a strong correlation between neuron color selectivities and color dataset bias.
 
  Address November 2017  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Maria Vanrell  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-945373-7-0 Medium  
  Area Expedition Conference  
  Notes (down) CIC Approved no  
  Call Number Admin @ si @ Raf2017 Serial 3100  
Permanent link to this record
 

 
Author David Vazquez; Jorge Bernal; F. Javier Sanchez; Gloria Fernandez Esparrach; Antonio Lopez; Adriana Romero; Michal Drozdzal; Aaron Courville edit   pdf
openurl 
  Title A Benchmark for Endoluminal Scene Segmentation of Colonoscopy Images Type Conference Article
  Year 2017 Publication 31st International Congress and Exhibition on Computer Assisted Radiology and Surgery Abbreviated Journal  
  Volume Issue Pages  
  Keywords Deep Learning; Medical Imaging  
  Abstract Colorectal cancer (CRC) is the third cause of cancer death worldwide. Currently, the standard approach to reduce CRC-related mortality is to perform regular screening in search for polyps and colonoscopy is the screening tool of choice. The main limitations of this screening procedure are polyp miss-rate and inability to perform visual assessment of polyp malignancy. These drawbacks can be reduced by designing Decision Support Systems (DSS) aiming to help clinicians in the different stages of the procedure by providing endoluminal scene segmentation. Thus, in this paper, we introduce an extended benchmark of colonoscopy image, with the hope of establishing a new strong benchmark for colonoscopy image analysis research. We provide new baselines on this dataset by training standard fully convolutional networks (FCN) for semantic segmentation and significantly outperforming, without any further post-processing, prior results in endoluminal scene segmentation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CARS  
  Notes (down) ADAS; MV; 600.075; 600.085; 600.076; 601.281; 600.118 Approved no  
  Call Number ADAS @ adas @ VBS2017a Serial 2880  
Permanent link to this record
 

 
Author David Vazquez; Jorge Bernal; F. Javier Sanchez; Gloria Fernandez Esparrach; Antonio Lopez; Adriana Romero; Michal Drozdzal; Aaron Courville edit   pdf
url  openurl
  Title A Benchmark for Endoluminal Scene Segmentation of Colonoscopy Images Type Journal Article
  Year 2017 Publication Journal of Healthcare Engineering Abbreviated Journal JHCE  
  Volume Issue Pages 2040-2295  
  Keywords Colonoscopy images; Deep Learning; Semantic Segmentation  
  Abstract Colorectal cancer (CRC) is the third cause of cancer death world-wide. Currently, the standard approach to reduce CRC-related mortality is to perform regular screening in search for polyps and colonoscopy is the screening tool of choice. The main limitations of this screening procedure are polyp miss- rate and inability to perform visual assessment of polyp malignancy. These drawbacks can be reduced by designing Decision Support Systems (DSS) aim- ing to help clinicians in the different stages of the procedure by providing endoluminal scene segmentation. Thus, in this paper, we introduce an extended benchmark of colonoscopy image segmentation, with the hope of establishing a new strong benchmark for colonoscopy image analysis research. The proposed dataset consists of 4 relevant classes to inspect the endolumninal scene, tar- geting different clinical needs. Together with the dataset and taking advantage of advances in semantic segmentation literature, we provide new baselines by training standard fully convolutional networks (FCN). We perform a compar- ative study to show that FCN significantly outperform, without any further post-processing, prior results in endoluminal scene segmentation, especially with respect to polyp segmentation and localization.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) ADAS; MV; 600.075; 600.085; 600.076; 601.281; 600.118 Approved no  
  Call Number VBS2017b Serial 2940  
Permanent link to this record
 

 
Author Joan Serrat; Felipe Lumbreras; Francisco Blanco; Manuel Valiente; Montserrat Lopez-Mesas edit   pdf
url  openurl
  Title myStone: A system for automatic kidney stone classification Type Journal Article
  Year 2017 Publication Expert Systems with Applications Abbreviated Journal ESA  
  Volume 89 Issue Pages 41-51  
  Keywords Kidney stone; Optical device; Computer vision; Image classification  
  Abstract Kidney stone formation is a common disease and the incidence rate is constantly increasing worldwide. It has been shown that the classification of kidney stones can lead to an important reduction of the recurrence rate. The classification of kidney stones by human experts on the basis of certain visual color and texture features is one of the most employed techniques. However, the knowledge of how to analyze kidney stones is not widespread, and the experts learn only after being trained on a large number of samples of the different classes. In this paper we describe a new device specifically designed for capturing images of expelled kidney stones, and a method to learn and apply the experts knowledge with regard to their classification. We show that with off the shelf components, a carefully selected set of features and a state of the art classifier it is possible to automate this difficult task to a good degree. We report results on a collection of 454 kidney stones, achieving an overall accuracy of 63% for a set of eight classes covering almost all of the kidney stones taxonomy. Moreover, for more than 80% of samples the real class is the first or the second most probable class according to the system, being then the patient recommendations for the two top classes similar. This is the first attempt towards the automatic visual classification of kidney stones, and based on the current results we foresee better accuracies with the increase of the dataset size.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) ADAS; MSIAU; 603.046; 600.122; 600.118 Approved no  
  Call Number Admin @ si @ SLB2017 Serial 3026  
Permanent link to this record
 

 
Author Cristhian Aguilera; Xavier Soria; Angel Sappa; Ricardo Toledo edit   pdf
openurl 
  Title RGBN Multispectral Images: a Novel Color Restoration Approach Type Conference Article
  Year 2017 Publication 15th International Conference on Practical Applications of Agents and Multi-Agent System Abbreviated Journal  
  Volume Issue Pages  
  Keywords Multispectral Imaging; Free Sensor Model; Neural Network  
  Abstract This paper describes a color restoration technique used to remove NIR information from single sensor cameras where color and near-infrared images are simultaneously acquired|referred to in the literature as RGBN images. The proposed approach is based on a neural network architecture that learns the NIR information contained in the RGBN images. The proposed approach is evaluated on real images obtained by using a pair of RGBN cameras. Additionally, qualitative comparisons with a nave color correction technique based on mean square
error minimization are provided.
 
  Address Porto; Portugal; June 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference PAAMS  
  Notes (down) ADAS; MSIAU; 600.118; 600.122 Approved no  
  Call Number Admin @ si @ ASS2017 Serial 2918  
Permanent link to this record
 

 
Author Patricia Suarez; Angel Sappa; Boris X. Vintimilla edit   pdf
url  openurl
  Title Learning to Colorize Infrared Images Type Conference Article
  Year 2017 Publication 15th International Conference on Practical Applications of Agents and Multi-Agent System Abbreviated Journal  
  Volume Issue Pages  
  Keywords CNN in multispectral imaging; Image colorization  
  Abstract This paper focuses on near infrared (NIR) image colorization by using a Generative Adversarial Network (GAN) architecture model. The proposed architecture consists of two stages. Firstly, it learns to colorize the given input, resulting in a RGB image. Then, in the second stage, a discriminative model is used to estimate the probability that the generated image came from the training dataset, rather than the image automatically generated. The proposed model starts the learning process from scratch, because our set of images is very di erent from the dataset used in existing pre-trained models, so transfer learning strategies cannot be used. Infrared image colorization is an important problem when human perception need to be considered, e.g, in remote sensing applications. Experimental results with a large set of real images are provided showing the validity of the proposed approach.  
  Address Porto; Portugal; June 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference PAAMS  
  Notes (down) ADAS; MSIAU; 600.086; 600.122; 600.118 Approved no  
  Call Number Admin @ si @ Serial 2919  
Permanent link to this record
 

 
Author Patricia Suarez; Angel Sappa; Boris X. Vintimilla edit   pdf
openurl 
  Title Colorizing Infrared Images through a Triplet Conditional DCGAN Architecture Type Conference Article
  Year 2017 Publication 19th international conference on image analysis and processing Abbreviated Journal  
  Volume Issue Pages  
  Keywords CNN in Multispectral Imaging; Image Colorization  
  Abstract This paper focuses on near infrared (NIR) image colorization by using a Conditional Deep Convolutional Generative Adversarial Network (CDCGAN) architecture model. The proposed architecture is based on the usage of a conditional probabilistic generative model. Firstly, it learns to colorize the given input image, by using a triplet model architecture that tackle every channel in an independent way. In the proposed model, the nal layer of red channel consider the infrared image to enhance the details, resulting in a sharp RGB image. Then, in the second stage, a discriminative model is used to estimate the probability that the generated image came from the training dataset, rather than the image automatically generated. Experimental results with a large set of real images are provided showing the validity of the proposed approach. Additionally, the proposed approach is compared with a state of the art approach showing better results.  
  Address Catania; Italy; September 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICIAP  
  Notes (down) ADAS; MSIAU; 600.086; 600.122; 600.118 Approved no  
  Call Number Admin @ si @ SSV2017c Serial 3016  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: