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Abstract

Convolutional Neural Networks (CNNs) trained for ob-
ject recognition tasks present representational capabilities
approaching to primate visual systems [1]. This provides
a computational framework to explore how image features
are efficiently represented. Here, we dissect a trained CNN
[2] to study how color is represented. We use a classical
methodology used in physiology that is measuring index of
selectivity of individual neurons to specific features. We
use ImageNet Dataset [20] images and synthetic versions
of them to quantify color tuning properties of artificial neu-
rons to provide a classification of the network population.
We conclude three main levels of color representation show-
ing some parallelisms with biological visual systems: (a) a
decomposition in a circular hue space to represent single
color regions with a wider hue sampling beyond the first
layer (V2), (b) the emergence of opponent low-dimensional
spaces in early stages to represent color edges (V1); and
(c) a strong entanglement between color and shape pat-
terns representing object-parts (e.g. wheel of a car), object-
shapes (e.g. faces) or object-surrounds configurations (e.g.
blue sky surrounding an object) in deeper layers (V4 or IT).

1. Introduction
Deep learning techniques and, more specifically, Con-

volutional Neural Networks (CNNs) have become central
in the computer vision field due to their impressive per-
formance on solving diversity of vision tasks, such as ob-
ject recognition or object detection. They consist in sev-
eral stacked layers that successively make visual represen-
tational transformations, as a result of an automatic training
that learns the best weights (neurons) to represent their input
and achieve the best performance on a specific visual task.
These artificial architectures have also been proposed as a
suitable framework to model biological vision [10, 11, 1],
and some trained CNNs have shown powerful representa-
tional capabilities that rival the primate visual system on

the performance achieved on a visual recognition task [1].

Although they can present an undesirable black-box na-
ture, several works have proposed different techniques in
order to understand the intermediate CNNs representation
and visualize learned features [29, 14, 25, 24, 28, 16] pro-
viding a visualization of how images are represented in each
level of representation and giving some insights of represen-
tational inspiration.

In this work we use an artificial neural network with a
high-level of representational capability to understand how
color can be efficiently represented in recognition tasks. We
work on a CNN trained by [2] whose architecture has been
proved as to rival the primate visual system performance
[1]. We analyze how trained neurons of this network cod-
ify color through the different convolutional layers and we
relate the conclusions to known evidences about how color
is represented in biological visual systems. To perform the
analysis we use a selectivity index that gets inspiration from
physiological methodologies.

The network was trained for image classification based
on labeled content and without any constraint on the filter
weights. From this training three different levels of color
representation emerge: (a) homogeneous color regions are
encoded on a set of neurons selective to one single hue;
(b) color edges are represented with color-opponent neu-
rons acting as low-dimensional spaces; and (c) most color
selective neurons entangle color and shape together in a pat-
tern matching approach. Remarkably, these representation
levels agree with some evidences on how color is encoded
through the visual pathway in biological systems: like the
existence of a small number of primary colors and a three-
dimensional color opponent space in early stages of the vi-
sual system [12, 13, 7, 3], a more dense sampling of dif-
ferent hues in V2 (hue maps) [27, 26, 8], and a clear de-
pendence between shape and color in higher level neurons
[5, 21].



2. Color neurons
In order to understand how color is represented in CNNs

we estimate a color selectivity index for all the network neu-
rons. Color neurons are those holding the property of be-
ing highly activated when a particular color appears in the
input image and, on the contrary, they present a low acti-
vation when this color is not present [22, 6, 19, 18]. One
way to measure this selectivity index is by computing the
variation of the neuron activation between color images and
their gray-level versions [18]. These gray-level images are
channel-wise replicated to fit into the constraints of the net-
work. Following this idea, color selectivity property is mea-
sured on the N-top image patches of the training set that ac-
tivate a specific neuron the most. The Area Under the Acti-
vation Curve1 (AUAC) of a neuron is obtained from the top
activations, both for color images and for their gray-level
versions and are combined to compute the color selectivity
index in this way:

α = 1−
∑N

j=1 w
′
j∑N

j=1 wj

(1)

where {wj}j=1:N are the neuron activation values to the
original N-top ranked image patches, and {w′j}j=1:N are
the activation values obtained by the same neuron to the
gray-level versions of the N-top images. Small α value in-
dicates the neuron is low color selective while a large α
indicates high color selectivity.

Above index allows to rank the set of neurons in terms
of how their activation is related to a specific color or not.
Using this index, we propose a classification of the network
neurons based on: (a) degree of selectivity (non color selec-
tive, low color selective or high color selective); (b) number
of colors a neuron is selective to (single or double); and (c)
the opponency property of double color neurons (opponent
or non opponent), that is related to the hue angular distance
between the color pair (opponent is 180◦). In next lines we
outline the details of the classification we used in the exper-
iments.

First, neurons are classified depending on their color se-
lectivity index α, being non color selective neurons those
with α < th1, high color selective neurons when α > th2
(th2 > th1) and, low color selective when α is in between.

Second, high color selective neurons are classified as sin-
gle neurons if they are selective only to one specific color
or double neurons if they are selective to a pair of colors.
This step is performed using the Neuron Feature (NF) im-
age [19], which is an approximation of the intrinsic spatio-
chromatic feature that activates the neuron. It is obtained by
computing a weighted average of the N -top image patches
that activate the neuron (here, N = 100), where weights

1We refer to Activation Curve as the set of activation values provided by
a neuron to a series of different input stimuli varying on a specific property.

are proportional to the activation value produced by each
image to this neuron. NF color distribution is fitted with
a Gaussian mixture model using Expectation-Maximization
(EM) algorithm. Color distribution is computed on the hue
dimension of an opponent color space2. Different numbers
of Gaussians are used for the fitting, and it is finally set to
the minimum number that differs less than a 10% over the
global mean square error with the distribution. This step al-
lows to get one (a pair of) representative hue (hues) for each
single (double) color neuron3.

Finally, double color neurons are classified in opponent
neurons if the pair of colors which a neuron is selective has
an angular distance close to 180◦. These angles are con-
sidered with respect to the center of the O2-O3 chromatic
plane. To study the set of axes emerged from each layer we
group the double neurons depending on their pair of colors.
For this clustering, we make use of the mean of the Gaus-
sians that fit the hue distribution for each neuron. Therefore,
each double neuron can be represented in a 2 dimensional
hue space. Here we propose to use a K-means clustering
for grouping neurons that share their pair of colors. We test
from K = 3 to 7 to detect the best number of clusters using
Elbow method, which is based on a ratio of the between-
group variance with respect to the total variance. Each clus-
ter will be used to infer the main axes emerged from each
layer. To refer easily to each group, we manually labeled
each cluster by their colors. All clusters emerged from the
detected double color selective neurons can be seen in ta-
ble 2, where each row joins neurons belonging to the same
cluster.

This classification provides a general map of color neu-
rons through layers giving insight on how color is repre-
sented in the CNN. In the next section, we analyze differ-
ent properties of the color neurons we found in the trained
CNN.

3. Results and discussion
In this section we summarize the results of exploring

how color information is represented across the layers of
the CNN VGG-M trained by Chatfield et al. [2] on the
ImageNet dataset [20] for an object categorization task.
We selected this network due to its similarity with the one
reported proved to have representational performance that
competes with primate capabilities [1]. This network con-
sists of five convolutional layers (with squared filters of
sizes 7, 5, 3, 3 and 3, respectively) followed by three fully
connected layers. To reduce the representation size and to
introduce some scale invariance, it also incorporates 3 max-

2The opponent color space (OPP) used in this work is the one proposed
by Platanoits et al. in [17] but normalizing and shifting the three axes
within the range

[
− 1, 1

]
3Selectivity to three or four colors was never found in our experiments

but may appear in other networks



Figure 1: Color selectivity index distribution along the 5
convolutional layers.

pooling layers after first, second and fifth convolutional lay-
ers. This network expects input images of 224x224 pixels
in RGB, where each convolutional layer analyzes receptive
fields of sizes 7x7x3, 27x27x3, 75x75x3, 107x107x3 and
139x139x3, from first to fifth convolutional layer.

The version of the ImageNet dataset used by Chatfield
et al. that we do also use in this work is the ILSRVC124,
which consists of around 1.2M of images classified in 1000
categories, according to the lexical WordNet hierarchy [15].

The distribution of the color selectivity indexes for all
neurons in convolutional layers of the network can be seen
in Fig. 1. We set th1 = 0.1, th2 = 0.25 to classify each
neuron as non, low or high color selective. From our expe-
rience, different variations of these thresholds would bring
to similar conclusions. Shallower layers have neurons with
extreme color index values (either very high or very low)
while deeper neurons are mainly described by intermedi-
ate index values. From this figure it can be concluded that,
although higher α values decrease through layers, color re-
mains as an important feature in deeper layers where non-
color selective neurons are almost disappeared. In table 1
we summarize the global results of classifying all the neu-
rons of the convolutional layers of the network. We give
the number of neurons in each class and the corresponding
percentage in the layer.

A visualization of these classified color neurons through
layers is shown in table 2. For each group we show a
subset of NFs belonging to the group. By observing NFs
we can observe that complexity increases through layers.
First, simple features such as homogeneous regions, ori-
ented color edges and different frequency and orientation
selective gray-level edges are found in Conv1. Second,
slightly more complex features such as blobs, curved edges

4Images can be browsed on http://image-
net.org/challenges/LSVRC/2012/browse-synsets, as well the concepts
(synsets) that describe each image.

Figure 2: Distribution of color selective neurons on a hue
dimension (black line). ImageNet color distribution on hue
dimension (colored bars). Dashed line indicates the dataset
bias on a Orangish-Bluish axis.

and textured regions appear in Conv2. Finally, we group
Conv3, Conv4 and Conv5 in a third level presenting a simi-
lar shape complexity: object-surround configurations, com-
plex objects like humans, dog faces or buildings. Main dif-
ferences between these three layers rely on object sizes, we
found similar shapes activating different neurons at differ-
ent layers thus at different image resolutions.

We grouped on a common histogram all color selective
neurons (α > 0.25) of all the network according to the col-
ors they are selective to. For each neuron we counted on the
hue axis (single neuron color is counted twice while double
color neurons are counted 1 for each color), the histogram
is represented by the black line in Fig. 2, overlapped on
the color distribution of the ImageNet dataset, that is shown
with colored bars. A clear bias on Orangish and Bluish re-
gions can be observed, both in the dataset and the color neu-
ron distributions. Thus, both distributions are highly corre-
lated, with a Pearson correlation coefficient (r) of 0.89.

In the following subsections we will analyze more in de-
tail each level of color representation that can be inferred
and we hypothesize about the parallelisms of these three
levels with the known evidences human visual system.

3.1. First level: single color regions

A first level to study is how regions of a single color
are represented by the network. We observe that they are
based on a composition of basic primary colors represented
by single color selective neurons. These neurons are mainly



Selectivity Conv1 Conv2 Conv3 Conv4 Conv5
#Neurons 96 2195 512 512 512

Non Color 56 (58.33%) 118 (53.88%) 225 (43.95%) 113 (22.07%) 52 (10.16%)
Low Color Sel 2 (2.08%) 28 (12.79%) 69 (33.01%) 255 (49.80%) 250 (48.83%)

Color Sel 38 (39.58%) 73 (33.33 %) 118 (23.05%) 144 (28.13%) 210 (41.02%)
Single Color 12 (12.50%) 49 (22.37%) 102 (19.92%) 134 (26.16%) 198 (38.67%)

Double Color 26 (27.08%) 24 (10.96%) 16 (3.13%) 10 (1.95%) 12 (2.34%)
Opponent 19 (19.79%) 14 (6.39%) 8 (1.56%) 1 (0.20%) 1 (0.20%)

Non opponent 7 (7.29%) 10 (4.57%) 8 (1.56%) 9 (1.76%) 11 (2.15%)

Table 1: Number of neurons for each neuron class (% of neurons of the group within the layer).
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Table 2: Examples of NFs for each convolutional layer and classified in different groups regarding color properties.

found in Conv1 and Conv2. In the first convolutional layer
single color neurons are specialized on the following basic
hues: Red, Green, Blue, Magenta, Cyan and Yellow, which
is a quite standard and balanced sampling of the hue circle,
whose combination allows to represent all the color hues.
In Fig. 3.(a) we can see the activation curves of these basic
neurons to homogeneous regions along the hue dimension.
Some of them present more than a neuron for a similar pri-
mary hue.

Color representation is more detailed on the second con-
volutional layer, where a more dense sampling of primary

hues is covered by the set of single neurons. Thus the color
of a region can be more precisely described in this more
extensive basis. In Fig. 3.(b) we can observe neuron acti-
vation curves of single neurons in the second layer. Acti-
vation curves were computed by rotated hue versions of the
first top activating image. The density of the hue sampling
performed by the single color neurons is measured. In ta-
ble 3 we show the results of computing a sparsity measure,
l0 = {j : Cj = 0} measure, studied in [9]. From these
measurements we can clearly see that Conv2 present a less
sparse distribution of sampled colors.



(a) Conv1 (b) Conv2

Figure 3: Activation curves of single neurons in (a) Conv1 and (b) Conv2 over series of images varying along the hue
dimension. Stimuli are rotated hue versions of the maximum activating image for each neuron.

In Fig. 4 we show how color single color neurons are
distributed along the hue dimension. We can see that in
shallower layers a more equitable distribution across the hue
dimension is presented. However, in deeper layers the ma-
jority of single neurons are concentrated on the Orangish
and Bluish regions, aligned with the color bias of the train-
ing dataset.

Here we want to highlight a clear parallelism of this level
of representation with what is known in the primate visual
system. A more dense sampling of hue has been reported
in several studies [27, 26, 8] with the existence of hue maps
in V2 cortical areas, where a continuous color tuning along
the hue is found, providing a more precise color perception.
The role of V2 as an intermediate layer in between the low
dimensional color space of primary colors found in V1 and
the entanglement of color and shape in posterior areas is
nicely revised in [4]. We can observe in Fig. 4 how this
role of intermediate layer is presented by Conv2 in the arti-
ficial network, which appears in between a low dimensional
representation of color in Conv1 with six primaries and the
emergence of an oversampled region on the orangish hue
linked to the color of the majority of objects, that starts in
Conv2 and that is clearly the essence color representation in
posterior layers.

3.2. Second level: color edges

In this section we explore a second level of representa-
tion that is about how color edges are represented by the
network. Color edges are low level features mainly repre-
sented by double color neurons in layers Conv1 and Conv2.

First convolutional layer presents a key role in this rep-
resentation due to the strong opponency shown by all clus-
ters of double color neurons. They are representing a
three dimensional opponent space based on three chromatic
channels Red-Cyan, Blue-Yellow and Magenta-Green axes,
where each pair of colors has an angular distance (oppo-

Bin-size 5◦ 10◦ 15◦ 20◦ 25◦ 30◦ 35◦ 40◦

Conv1 64 30 18 12 8 7 5 4
Conv2 46 17 8 4 2 2 2 1
Conv3 49 21 14 10 7 5 4 4
Conv4 51 23 14 11 9 5 4 4
Conv5 50 22 14 10 8 6 5 5

Table 3: Hue sparsity representation of high single color se-
lective neurons set for each layer (l0 measure) and for dif-
ferent bin sizes. Minimums (in bold) are found in Conv2
for all tested sizes.

nency property) of 166.74◦, 168.31◦ and 160◦, respectively.
In Fig. 5 we show activation curves of three double color
neurons in Conv1 oriented in 45◦ (one for each color axis)
to different synthetic color edges in the same orientation.
We compute the activation on 4 different type of edges com-
posed by pairs of colors holding different angular distances
between them: 45◦, 90◦, 135◦ and 180◦, each type of edge
is generated along a sampling of the entire hue. In this fig-
ure, for each type of edges we plot the color edge achieving
the maximum activation for each neuron. For the case of
opponent edges (180◦, maximum color pair contrast differ-
ence), the maximal neuron activations are achieved when
the edge coincides with the NF pattern (see the legend for
a visualization of NFs of the studied neurons). The rest of
color edges are represented by different triplets of weights
on the neuron basis. In this way we show how any color-
edge is represented by the three main group of opponent
axes emerging in this layer Conv1.

The emergence of the opponent space defined by 4 op-
ponent axes (adding Black-White) shows a strong correla-
tion with early stages of the primate visual systems. On
one hand, the existence of opponent neurons in the axes
of Black-White, Red-Green (cyan in our case) and Blue-
Yellow was initially proved by the findings of Derrington



(a) Conv1 (b) Conv2 (c) Conv3 (d) Conv4 (e) Conv5

Figure 4: Number of single color neurons per hue for the five convolutional layers. Shallower layers (conv1 and conv2)
present a more equitable distribution along the hue dimension. Deeper layers (conv3, conv4 and conv5) concentrate single
neurons on Orangish and Bluish regions following the color bias of the training dataset.

Figure 5: Representation of color edges. Activation curves of three
different double opponent color neurons at Conv1 to 4 different
types of edges regarding the opponency property of the pair of
colors on the tested edges: opponent edges (180), 135, 90 and 45
color edges.

(a) (b)

Figure 6: Orange-blue edge representation in Conv1.
(a) Activation values of some neurons in Conv1 (NFs
are in first row) to a set of images (first column)
in a color scale from blue (minimum) to red (max-
imum). (b) Double neurons in Conv1 over the hue
space. Orange-Blue image (dashed line) is represented
between two main neurons in Conv1 (Blue-Yelow and
Red-Cyan).

et al. in [7], and later by Lennie et al. in [12, 13]. On
the other hand, an additional fourth opponent axis in the
direction of Magenta-Green could coincide with posterior
studies [3]. We think it is quite remarkable that this artifi-
cial architecture shows such a coincidence with the biolog-
ical vision, which are giving support to hypothesis regard-
ing the efficiency of neural information to represent natural
image statistics. Further correlations are given by the fact
that these double color neurons present selectivity to ori-
ented and low spatial-frequency edges, meanwhile black-
white neurons present selectivity to a wider variety of spa-
tial frequencies of oriented edges as it is revised in [22].

In the rest of the layers, different axes emerge from the
double color neurons, but they move away from the oppo-
nency property and with shapes more complex than edges.
Only with the exception of the Bluish-Orangish axis, which
is present in all these layers, holding an angular distance
greater than 160◦ between the two colors. This axis is a ro-

tation of the Blue-Yellow axis found in Conv1 that matches
the bias of the training dataset. In Fig. 6.(a) we show
how several image patches that highly activate a Bluish-
Orangish neuron of Conv2 are represented in Conv1. NFs
of the first convolutional layer that are most activated by
these kind of Orange-Blue edge stimuli (oriented in 135◦)
are plotted in the first row. Tested images are shown in the
first column. Activation values are shown in a scale from
blue (minimum) to red (maximum). In Fig. 6.(b) we show
how double color neurons are distributed in the chromaticity
plane of the opponent color space, including the represen-
tation of a Blue-Orange image. This example brings us to
speculate about the hierarchy of the Bluish-Orangish neuron
population code in Conv2: it is activated when a Red-Cyan
neuron of Conv1 with an edge of 135◦ is highly activated
jointly with a high activation of a Yellow-Blue neuron (also
in Conv1) with a 90◦ oriented edge6.

6Note that in Conv1 a Blue-Yellow neuron having an oriented edge of



3.3. Third level: color-shape entanglement

As seen in previous sections, color is an important prop-
erty that may characterize the activity of a neuron. Nev-
ertheless, this property always appears strongly linked with
the intrinsic shape that also activates the neuron. In this sec-
tion we analyze the entanglement of both properties, shape
and color, which can be understood as a template matching
scheme linked to the activity of any neuron along the artifi-
cial network. With color-shape entanglement we mean that
the activation of a single neuron requires the appearance of
a specific color in an appropriate configuration or shape.

This color-shape entanglement appears through all the
layers. Regarding shallower layers we plot in Fig. 7 a set of
neuron activation curves for two color neurons in (a) Conv1
and (b) Conv2, both representing colored edges oriented
in 135◦. Each neuron activation curve is obtained from a
set of oriented edge images, sharing the same orientation
but with different opponent color pairs. Different oriented
edges are tested for both neurons and maximum activations
are achieved when color pair and orientation match with the
input image (see the neuron NF visualization on the top left
corner).

In the same line, neurons in deeper layers which are re-
sponsible to detect more complex shapes also present this
color-shape dependence. As we can see in table 2 NFs in
layers Conv3, Conv4 and Conv5 present pattern of recog-
nizable objects (like bodies, mushrooms, ladybugs etc.), ob-
ject parts (like wheels of cars, dog faces, semicircles, etc.)
or object surround configurations (like blue object in a green
surround, squared object under a blue sky, etc.). For this
kind of neurons we show two examples of activation curves
where either color or shape were varied. First, in Fig. 8
we show the effect of a neuron in Conv5 with a high color
selectivity index and which is ladybug selective. We show
the activation curve of the neuron when different colored
versions of the image activate the neuron. Ladybug image
is transformed by rotating color image pixels on the chro-
maticity plane. The rotation is performed along the hue
dimension. Note that this neuron is uniquely selective to
orangish ladybugs. Second, for another neuron we study
the activation curve when shape is varied. In Fig. 9 we
plot several activation curves of a neuron found in Conv4
with a high color selective index, and very selective to faces
of a specific size and in the usual vertical orientation. The
curves show the variation of the activation when same face
images that highly activate this neuron are spatially rotated.
Note that the same image with spatial rotations modifies the
activity of the neuron, although sharing same color appear-
ance.

The strong entanglement between color and shape in the

135◦ (with yellow in the bottom-left and blue in the top-right) was not
found. In its absence, the vertical edge neuron is the most similar.

human visual system has been proved in several works, re-
vised by Shapley et al. [23]. Although deeper visual ares of
the human visual system are not known like in previous ar-
eas, in V4 and PIT (posterior inferior temporal cortex) color
and complex shape selectivity has been found [5]. More-
over, [21] stated that neurons in V4 are selective to large
range of colors and white surfaces and also sensitive to sur-
rounds that may participate in the separation between object
and background.

4. Conclusions
Artificial neural networks have been a revolutionary

technique due to their impressive performance in solving
different visual tasks. Although they are easily trained on
large datasets, the intermediate representation learned by
the network architecture are not fully understood. In this
work we focus on the analysis of how color is particularly
encoded through the different convolutional layers. We find
important parallelisms with the human visual system. To
this end, we use a methodology inspired on physiological
neural research, which is based on the estimation of a color
selectivity index for each neuron. We measure several color
properties that allow to classify all the network neurons: (a)
the color selectivity index for all neurons; (b) the amount of
distinctive colors a neuron is selective to, this allows to de-
fine single (one color) and double (two colors) neurons; (c)
the opponency property between the pair of colors in dou-
ble neurons; and (d) the sparsity of the sampling of the color
neurons over a hue dimension.

We found color selective neurons in all convolutional
layers, although shallower layers present higher indexes of
color selectivity. We define three main levels of color rep-
resentation.

First, we study single color neurons representing single
color regions, this representation is based on encoding all
colors in a primary basis of six basic colors (in Conv1)
while a more dense hue sampling appears in Conv2. This
way of encoding basic color and the increase in hue sam-
pling correlates with evidences in the primate visual system
[27, 26, 8].

Second, we focus on double color neurons devoted to
color edge detection. Here the network learns a subset of
neurons in Conv1 whose pairs define a 4-dimensional op-
ponent space (Red-Cyan, Blue-Yellow, Magenta-Green and
Black-White) in the first convolutional layer presenting a
clear correlation with known results in the primary visual
cortex. [7, 12, 13, 3].

Finally, we find that color and shape present a strong en-
tanglement at all levels of the network, either for simple
features as edges, bars or textures in shallower layers, or
for more complex features as faces, bodies or cars in deeper
layers. This high level of entanglement has also been sug-
gested in several physiological studies [5, 21].



(a) (b)

Figure 7: Neuron activation of two edge-oriented double color selective neurons, (a) Conv1 (α = 0.99) and (b) Conv2
(α = 0.44). Activation curve for different synthetic oriented color edges, varying in hue-pairs and orientation. Blue line
connects activations corresponding to images with the same orientation but different color-pair. Neuron NFs are framed in
blue on the top-left corners.

Figure 8: Activation curve of a ladybug-color-
selective neuron in Conv5 (α = 0.94) for different
versions of the same image by rotating hues. Max-
imum activation corresponds to a perfect matching
with the original color of the image patch that maxi-
mally activates this neuron. Neuron NF is framed in
blue (top-left).

Figure 9: Activation curves of 3 face-color-selective
neuron in Conv4 (α = 0.59) for different versions
of the same image by spatially rotating the set of top
image patches. Maximum activations are achieved
corresponds to the original orientation of the image
patch. Examples of the tested images are shown on
the top of the plot, while the NF of the neuron is
framed in blue in the bottom.
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