toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Daniel Hernandez; Alejandro Chacon; Antonio Espinosa; David Vazquez; Juan Carlos Moure; Antonio Lopez edit   pdf
url  openurl
  Title Embedded real-time stereo estimation via Semi-Global Matching on the GPU Type Conference Article
  Year 2016 Publication 16th International Conference on Computational Science Abbreviated Journal  
  Volume 80 Issue Pages (down) 143-153  
  Keywords Autonomous Driving; Stereo; CUDA; 3d reconstruction  
  Abstract Dense, robust and real-time computation of depth information from stereo-camera systems is a computationally demanding requirement for robotics, advanced driver assistance systems (ADAS) and autonomous vehicles. Semi-Global Matching (SGM) is a widely used algorithm that propagates consistency constraints along several paths across the image. This work presents a real-time system producing reliable disparity estimation results on the new embedded energy-efficient GPU devices. Our design runs on a Tegra X1 at 41 frames per second for an image size of 640x480, 128 disparity levels, and using 4 path directions for the SGM method.  
  Address San Diego; CA; USA; June 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCS  
  Notes ADAS; 600.085; 600.082; 600.076 Approved no  
  Call Number ADAS @ adas @ HCE2016a Serial 2740  
Permanent link to this record
 

 
Author Miguel Angel Bautista; Antonio Hernandez; Sergio Escalera; Laura Igual; Oriol Pujol; Josep Moya; Veronica Violant; Maria Teresa Anguera edit   pdf
doi  openurl
  Title A Gesture Recognition System for Detecting Behavioral Patterns of ADHD Type Journal Article
  Year 2016 Publication IEEE Transactions on System, Man and Cybernetics, Part B Abbreviated Journal TSMCB  
  Volume 46 Issue 1 Pages (down) 136-147  
  Keywords Gesture Recognition; ADHD; Gaussian Mixture Models; Convex Hulls; Dynamic Time Warping; Multi-modal RGB-Depth data  
  Abstract We present an application of gesture recognition using an extension of Dynamic Time Warping (DTW) to recognize behavioural patterns of Attention Deficit Hyperactivity Disorder (ADHD). We propose an extension of DTW using one-class classifiers in order to be able to encode the variability of a gesture category, and thus, perform an alignment between a gesture sample and a gesture class. We model the set of gesture samples of a certain gesture category using either GMMs or an approximation of Convex Hulls. Thus, we add a theoretical contribution to classical warping path in DTW by including local modeling of intra-class gesture variability. This methodology is applied in a clinical context, detecting a group of ADHD behavioural patterns defined by experts in psychology/psychiatry, to provide support to clinicians in the diagnose procedure. The proposed methodology is tested on a novel multi-modal dataset (RGB plus Depth) of ADHD children recordings with behavioural patterns. We obtain satisfying results when compared to standard state-of-the-art approaches in the DTW context.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; MILAB; Approved no  
  Call Number Admin @ si @ BHE2016 Serial 2566  
Permanent link to this record
 

 
Author Joana Maria Pujadas-Mora; Alicia Fornes; Josep Llados; Anna Cabre edit   pdf
isbn  openurl
  Title Bridging the gap between historical demography and computing: tools for computer-assisted transcription and the analysis of demographic sources Type Book Chapter
  Year 2016 Publication The future of historical demography. Upside down and inside out Abbreviated Journal  
  Volume Issue Pages (down) 127-131  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Acco Publishers Place of Publication Editor K.Matthijs; S.Hin; H.Matsuo; J.Kok  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-94-6292-722-3 Medium  
  Area Expedition Conference  
  Notes DAG; 600.097 Approved no  
  Call Number Admin @ si @ PFL2016 Serial 2907  
Permanent link to this record
 

 
Author Marc Oliu; Ciprian Corneanu; Laszlo A. Jeni; Jeffrey F. Cohn; Takeo Kanade; Sergio Escalera edit   pdf
openurl 
  Title Continuous Supervised Descent Method for Facial Landmark Localisation Type Conference Article
  Year 2016 Publication 13th Asian Conference on Computer Vision Abbreviated Journal  
  Volume 10112 Issue Pages (down) 121-135  
  Keywords  
  Abstract Recent methods for facial landmark location perform well on close-to-frontal faces but have problems in generalising to large head rotations. In order to address this issue we propose a second order linear regression method that is both compact and robust against strong rotations. We provide a closed form solution, making the method fast to train. We test the method’s performance on two challenging datasets. The first has been intensely used by the community. The second has been specially generated from a well known 3D face dataset. It is considerably more challenging, including a high diversity of rotations and more samples than any other existing public dataset. The proposed method is compared against state-of-the-art approaches, including RCPR, CGPRT, LBF, CFSS, and GSDM. Results upon both datasets show that the proposed method offers state-of-the-art performance on near frontal view data, improves state-of-the-art methods on more challenging head rotation problems and keeps a compact model size.  
  Address Taipei; Taiwan; November 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ACCV  
  Notes HuPBA;MILAB; Approved no  
  Call Number Admin @ si @ OCJ2016 Serial 2838  
Permanent link to this record
 

 
Author Miguel Oliveira; Victor Santos; Angel Sappa; P. Dias; A. Moreira edit   pdf
url  openurl
  Title Incremental texture mapping for autonomous driving Type Journal Article
  Year 2016 Publication Robotics and Autonomous Systems Abbreviated Journal RAS  
  Volume 84 Issue Pages (down) 113-128  
  Keywords Scene reconstruction; Autonomous driving; Texture mapping  
  Abstract Autonomous vehicles have a large number of on-board sensors, not only for providing coverage all around the vehicle, but also to ensure multi-modality in the observation of the scene. Because of this, it is not trivial to come up with a single, unique representation that feeds from the data given by all these sensors. We propose an algorithm which is capable of mapping texture collected from vision based sensors onto a geometric description of the scenario constructed from data provided by 3D sensors. The algorithm uses a constrained Delaunay triangulation to produce a mesh which is updated using a specially devised sequence of operations. These enforce a partial configuration of the mesh that avoids bad quality textures and ensures that there are no gaps in the texture. Results show that this algorithm is capable of producing fine quality textures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.086 Approved no  
  Call Number Admin @ si @ OSS2016b Serial 2912  
Permanent link to this record
 

 
Author Katerine Diaz; Aura Hernandez-Sabate; Antonio Lopez edit   pdf
doi  openurl
  Title A reduced feature set for driver head pose estimation Type Journal Article
  Year 2016 Publication Applied Soft Computing Abbreviated Journal ASOC  
  Volume 45 Issue Pages (down) 98-107  
  Keywords Head pose estimation; driving performance evaluation; subspace based methods; linear regression  
  Abstract Evaluation of driving performance is of utmost importance in order to reduce road accident rate. Since driving ability includes visual-spatial and operational attention, among others, head pose estimation of the driver is a crucial indicator of driving performance. This paper proposes a new automatic method for coarse and fine head's yaw angle estimation of the driver. We rely on a set of geometric features computed from just three representative facial keypoints, namely the center of the eyes and the nose tip. With these geometric features, our method combines two manifold embedding methods and a linear regression one. In addition, the method has a confidence mechanism to decide if the classification of a sample is not reliable. The approach has been tested using the CMU-PIE dataset and our own driver dataset. Despite the very few facial keypoints required, the results are comparable to the state-of-the-art techniques. The low computational cost of the method and its robustness makes feasible to integrate it in massive consume devices as a real time application.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.085; 600.076; Approved no  
  Call Number Admin @ si @ DHL2016 Serial 2760  
Permanent link to this record
 

 
Author Gloria Fernandez Esparrach; Jorge Bernal; Cristina Rodriguez de Miguel; Debora Gil; Fernando Vilariño; Henry Cordova; Cristina Sanchez Montes; Isis Ara edit  openurl
  Title Utilidad de la visión por computador para la localización de pólipos pequeños y planos Type Conference Article
  Year 2016 Publication XIX Reunión Nacional de la Asociación Española de Gastroenterología, Gastroenterology Hepatology Abbreviated Journal  
  Volume 39 Issue 2 Pages (down) 94  
  Keywords  
  Abstract  
  Address Madrid (Spain)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference AEGASTRO  
  Notes MV; IAM; 600.097;SIAI Approved no  
  Call Number Admin @ si @FBR2016 Serial 2779  
Permanent link to this record
 

 
Author L. Calvet; A. Ferrer; M. Gomes; A. Juan; David Masip edit   pdf
doi  openurl
  Title Combining Statistical Learning with Metaheuristics for the Multi-Depot Vehicle Routing Problem with Market Segmentation Type Journal Article
  Year 2016 Publication Computers & Industrial Engineering Abbreviated Journal CIE  
  Volume 94 Issue Pages (down) 93-104  
  Keywords Multi-Depot Vehicle Routing Problem; market segmentation applications; hybrid algorithms; statistical learning  
  Abstract In real-life logistics and distribution activities it is usual to face situations in which the distribution of goods has to be made from multiple warehouses or depots to the nal customers. This problem is known as the Multi-Depot Vehicle Routing Problem (MDVRP), and it typically includes two sequential and correlated stages: (a) the assignment map of customers to depots, and (b) the corresponding design of the distribution routes. Most of the existing work in the literature has focused on minimizing distance-based distribution costs while satisfying a number of capacity constraints. However, no attention has been given so far to potential variations in demands due to the tness of the customerdepot mapping in the case of heterogeneous depots. In this paper, we consider this realistic version of the problem in which the depots are heterogeneous in terms of their commercial o er and customers show di erent willingness to consume depending on how well the assigned depot ts their preferences. Thus, we assume that di erent customer-depot assignment maps will lead to di erent customer-expenditure levels. As a consequence, market-segmentation strategiesneed to be considered in order to increase sales and total income while accounting for the distribution costs. To solve this extension of the MDVRP, we propose a hybrid approach that combines statistical learning techniques with a metaheuristic framework. First, a set of predictive models is generated from historical data. These statistical models allow estimating the demand of any customer depending on the assigned depot. Then, the estimated expenditure of each customer is included as part of an enriched objective function as a way to better guide the stochastic local search inside the metaheuristic framework. A set of computational experiments contribute to illustrate our approach and how the extended MDVRP considered here di ers in terms of the proposed solutions from the traditional one.  
  Address  
  Corporate Author Thesis  
  Publisher PERGAMON-ELSEVIER SCIENCE LTD Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title CIE  
  Series Volume Series Issue Edition  
  ISSN 0360-8352 ISBN Medium  
  Area Expedition Conference  
  Notes OR;MV; Approved no  
  Call Number Admin @ si @ CFG2016 Serial 2749  
Permanent link to this record
 

 
Author H. Martin Kjer; Jens Fagertun; Sergio Vera; Debora Gil; Miguel Angel Gonzalez Ballester; Rasmus R. Paulsena edit   pdf
url  openurl
  Title Free-form image registration of human cochlear uCT data using skeleton similarity as anatomical prior Type Journal Article
  Year 2016 Publication Patter Recognition Letters Abbreviated Journal PRL  
  Volume 76 Issue 1 Pages (down) 76-82  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.060 Approved no  
  Call Number Admin @ si @ MFV2017b Serial 2941  
Permanent link to this record
 

 
Author G. de Oliveira; Mariella Dimiccoli; Petia Radeva edit  openurl
  Title Egocentric Image Retrieval With Deep Convolutional Neural Networks Type Conference Article
  Year 2016 Publication 19th International Conference of the Catalan Association for Artificial Intelligence Abbreviated Journal  
  Volume Issue Pages (down) 71-76  
  Keywords  
  Abstract  
  Address Barcelona; Spain; October 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CCIA  
  Notes MILAB Approved no  
  Call Number Admin @ si @ODR2016 Serial 2790  
Permanent link to this record
 

 
Author Gerard Canal; Sergio Escalera; Cecilio Angulo edit   pdf
doi  openurl
  Title A Real-time Human-Robot Interaction system based on gestures for assistive scenarios Type Journal Article
  Year 2016 Publication Computer Vision and Image Understanding Abbreviated Journal CVIU  
  Volume 149 Issue Pages (down) 65-77  
  Keywords Gesture recognition; Human Robot Interaction; Dynamic Time Warping; Pointing location estimation  
  Abstract Natural and intuitive human interaction with robotic systems is a key point to develop robots assisting people in an easy and effective way. In this paper, a Human Robot Interaction (HRI) system able to recognize gestures usually employed in human non-verbal communication is introduced, and an in-depth study of its usability is performed. The system deals with dynamic gestures such as waving or nodding which are recognized using a Dynamic Time Warping approach based on gesture specific features computed from depth maps. A static gesture consisting in pointing at an object is also recognized. The pointed location is then estimated in order to detect candidate objects the user may refer to. When the pointed object is unclear for the robot, a disambiguation procedure by means of either a verbal or gestural dialogue is performed. This skill would lead to the robot picking an object in behalf of the user, which could present difficulties to do it by itself. The overall system — which is composed by a NAO and Wifibot robots, a KinectTM v2 sensor and two laptops — is firstly evaluated in a structured lab setup. Then, a broad set of user tests has been completed, which allows to assess correct performance in terms of recognition rates, easiness of use and response times.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier B.V. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB; Approved no  
  Call Number Admin @ si @ CEA2016 Serial 2768  
Permanent link to this record
 

 
Author Carles Sanchez; Debora Gil; Jorge Bernal; F. Javier Sanchez; Marta Diez-Ferrer; Antoni Rosell edit   pdf
openurl 
  Title Navigation Path Retrieval from Videobronchoscopy using Bronchial Branches Type Conference Article
  Year 2016 Publication 19th International Conference on Medical Image Computing and Computer Assisted Intervention Workshops Abbreviated Journal  
  Volume 9401 Issue Pages (down) 62-70  
  Keywords Bronchoscopy navigation; Lumen center; Brochial branches; Navigation path; Videobronchoscopy  
  Abstract Bronchoscopy biopsy can be used to diagnose lung cancer without risking complications of other interventions like transthoracic needle aspiration. During bronchoscopy, the clinician has to navigate through the bronchial tree to the target lesion. A main drawback is the difficulty to check whether the exploration is following the correct path. The usual guidance using fluoroscopy implies repeated radiation of the clinician, while alternative systems (like electromagnetic navigation) require specific equipment that increases intervention costs. We propose to compute the navigated path using anatomical landmarks extracted from the sole analysis of videobronchoscopy images. Such landmarks allow matching the current exploration to the path previously planned on a CT to indicate clinician whether the planning is being correctly followed or not. We present a feasibility study of our landmark based CT-video matching using bronchoscopic videos simulated on a virtual bronchoscopy interactive interface.  
  Address Quebec; Canada; September 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MICCAIW  
  Notes IAM; MV; 600.060; 600.075 Approved no  
  Call Number Admin @ si @ SGB2016 Serial 2885  
Permanent link to this record
 

 
Author Joan Mas; Alicia Fornes; Josep Llados edit   pdf
doi  openurl
  Title An Interactive Transcription System of Census Records using Word-Spotting based Information Transfer Type Conference Article
  Year 2016 Publication 12th IAPR Workshop on Document Analysis Systems Abbreviated Journal  
  Volume Issue Pages (down) 54-59  
  Keywords  
  Abstract This paper presents a system to assist in the transcription of historical handwritten census records in a crowdsourcing platform. Census records have a tabular structured layout. They consist in a sequence of rows with information of homes ordered by street address. For each household snippet in the page, the list of family members is reported. The censuses are recorded in intervals of a few years and the information of individuals in each household is quite stable from a point in time to the next one. This redundancy is used to assist the transcriber, so the redundant information is transferred from the census already transcribed to the next one. Household records are aligned from one year to the next one using the knowledge of the ordering by street address. Given an already transcribed census, a query by string word spotting is applied. Thus, names from the census in time t are used as queries in the corresponding home record in time t+1. Since the search is constrained, the obtained precision-recall values are very high, with an important reduction in the transcription time. The proposed system has been tested in a real citizen-science experience where non expert users transcribe the census data of their home town.  
  Address Santorini; Greece; April 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference DAS  
  Notes DAG; 603.053; 602.006; 600.061; 600.077; 600.097 Approved no  
  Call Number Admin @ si @ MFL2016 Serial 2751  
Permanent link to this record
 

 
Author Mariella Dimiccoli edit   pdf
doi  openurl
  Title Fundamentals of cone regression Type Journal
  Year 2016 Publication Journal of Statistics Surveys Abbreviated Journal  
  Volume 10 Issue Pages (down) 53-99  
  Keywords cone regression; linear complementarity problems; proximal operators.  
  Abstract Cone regression is a particular case of quadratic programming that minimizes a weighted sum of squared residuals under a set of linear inequality constraints. Several important statistical problems such as isotonic, concave regression or ANOVA under partial orderings, just to name a few, can be considered as particular instances of the cone regression problem. Given its relevance in Statistics, this paper aims to address the fundamentals of cone regression from a theoretical and practical point of view. Several formulations of the cone regression problem are considered and, focusing on the particular case of concave regression as an example, several algorithms are analyzed and compared both qualitatively and quantitatively through numerical simulations. Several improvements to enhance numerical stability and bound the computational cost are proposed. For each analyzed algorithm, the pseudo-code and its corresponding code in Matlab are provided. The results from this study demonstrate that the choice of the optimization approach strongly impacts the numerical performances. It is also shown that methods are not currently available to solve efficiently cone regression problems with large dimension (more than many thousands of points). We suggest further research to fill this gap by exploiting and adapting classical multi-scale strategy to compute an approximate solution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1935-7516 ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; Approved no  
  Call Number Admin @ si @Dim2016a Serial 2783  
Permanent link to this record
 

 
Author Tadashi Araki; Sumit K. Banchhor; Narendra D. Londhe; Nobutaka Ikeda; Petia Radeva; Devarshi Shukla; Luca Saba; Antonella Balestrieri; Andrew Nicolaides; Shoaib Shafique; John R. Laird; Jasjit S. Suri edit  doi
openurl 
  Title Reliable and Accurate Calcium Volume Measurement in Coronary Artery Using Intravascular Ultrasound Videos Type Journal Article
  Year 2016 Publication Journal of Medical Systems Abbreviated Journal JMS  
  Volume 40 Issue 3 Pages (down) 51:1-51:20  
  Keywords Interventional cardiology; Atherosclerosis; Coronary arteries; IVUS; calcium volume; Soft computing; Performance Reliability; Accuracy  
  Abstract Quantitative assessment of calcified atherosclerotic volume within the coronary artery wall is vital for cardiac interventional procedures. The goal of this study is to automatically measure the calcium volume, given the borders of coronary vessel wall for all the frames of the intravascular ultrasound (IVUS) video. Three soft computing fuzzy classification techniques were adapted namely Fuzzy c-Means (FCM), K-means, and Hidden Markov Random Field (HMRF) for automated segmentation of calcium regions and volume computation. These methods were benchmarked against previously developed threshold-based method. IVUS image data sets (around 30,600 IVUS frames) from 15 patients were collected using 40 MHz IVUS catheter (Atlantis® SR Pro, Boston Scientific®, pullback speed of 0.5 mm/s). Calcium mean volume for FCM, K-means, HMRF and threshold-based method were 37.84 ± 17.38 mm3, 27.79 ± 10.94 mm3, 46.44 ± 19.13 mm3 and 35.92 ± 16.44 mm3 respectively. Cross-correlation, Jaccard Index and Dice Similarity were highest between FCM and threshold-based method: 0.99, 0.92 ± 0.02 and 0.95 + 0.02 respectively. Student’s t-test, z-test and Wilcoxon-test are also performed to demonstrate consistency, reliability and accuracy of the results. Given the vessel wall region, the system reliably and automatically measures the calcium volume in IVUS videos. Further, we validated our system against a trained expert using scoring: K-means showed the best performance with an accuracy of 92.80 %. Out procedure and protocol is along the line with method previously published clinically.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; Approved no  
  Call Number Admin @ si @ ABL2016 Serial 2729  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: