toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Xinhang Song; Luis Herranz; Shuqiang Jiang edit   pdf
openurl 
  Title Depth CNNs for RGB-D Scene Recognition: Learning from Scratch Better than Transferring from RGB-CNNs Type Conference Article
  Year 2017 Publication 31st AAAI Conference on Artificial Intelligence Abbreviated Journal  
  Volume Issue Pages  
  Keywords RGB-D scene recognition; weakly supervised; fine tune; CNN  
  Abstract Scene recognition with RGB images has been extensively studied and has reached very remarkable recognition levels, thanks to convolutional neural networks (CNN) and large scene datasets. In contrast, current RGB-D scene data is much more limited, so often leverages RGB large datasets, by transferring pretrained RGB CNN models and fine-tuning with the target RGB-D dataset. However, we show that this approach has the limitation of hardly reaching bottom layers, which is key to learn modality-specific features. In contrast, we focus on the bottom layers, and propose an alternative strategy to learn depth features combining local weakly supervised training from patches followed by global fine tuning with images. This strategy is capable of learning very discriminative depth-specific features with limited depth images, without resorting to Places-CNN. In addition we propose a modified CNN architecture to further match the complexity of the model and the amount of data available. For RGB-D scene recognition, depth and RGB features are combined by projecting them in a common space and further leaning a multilayer classifier, which is jointly optimized in an end-to-end network. Our framework achieves state-of-the-art accuracy on NYU2 and SUN RGB-D in both depth only and combined RGB-D data.  
  Address San Francisco CA; February 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up) AAAI  
  Notes LAMP; 600.120 Approved no  
  Call Number Admin @ si @ SHJ2017 Serial 2967  
Permanent link to this record
 

 
Author Muhammad Anwer Rao; Fahad Shahbaz Khan; Joost Van de Weijer; Jorma Laaksonen edit   pdf
doi  openurl
  Title Tex-Nets: Binary Patterns Encoded Convolutional Neural Networks for Texture Recognition Type Conference Article
  Year 2017 Publication 19th International Conference on Multimodal Interaction Abbreviated Journal  
  Volume Issue Pages  
  Keywords Convolutional Neural Networks; Texture Recognition; Local Binary Paterns  
  Abstract Recognizing materials and textures in realistic imaging conditions is a challenging computer vision problem. For many years, local features based orderless representations were a dominant approach for texture recognition. Recently deep local features, extracted from the intermediate layers of a Convolutional Neural Network (CNN), are used as filter banks. These dense local descriptors from a deep model, when encoded with Fisher Vectors, have shown to provide excellent results for texture recognition. The CNN models, employed in such approaches, take RGB patches as input and train on a large amount of labeled images. We show that CNN models, which we call TEX-Nets, trained using mapped coded images with explicit texture information provide complementary information to the standard deep models trained on RGB patches. We further investigate two deep architectures, namely early and late fusion, to combine the texture and color information. Experiments on benchmark texture datasets clearly demonstrate that TEX-Nets provide complementary information to standard RGB deep network. Our approach provides a large gain of 4.8%, 3.5%, 2.6% and 4.1% respectively in accuracy on the DTD, KTH-TIPS-2a, KTH-TIPS-2b and Texture-10 datasets, compared to the standard RGB network of the same architecture. Further, our final combination leads to consistent improvements over the state-of-the-art on all four datasets.  
  Address Glasgow; Scothland; November 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up) ACM  
  Notes LAMP; 600.109; 600.068; 600.120 Approved no  
  Call Number Admin @ si @ RKW2017 Serial 3038  
Permanent link to this record
 

 
Author Aniol Lidon; Marc Bolaños; Mariella Dimiccoli; Petia Radeva; Maite Garolera; Xavier Giro edit   pdf
doi  isbn
openurl 
  Title Semantic Summarization of Egocentric Photo-Stream Events Type Conference Article
  Year 2017 Publication 2nd Workshop on Lifelogging Tools and Applications Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address San Francisco; USA; October 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4503-5503-2 Medium  
  Area Expedition Conference (up) ACMW (LTA)  
  Notes MILAB; no proj Approved no  
  Call Number Admin @ si @ LBD2017 Serial 3024  
Permanent link to this record
 

 
Author Pierdomenico Fiadino; Victor Ponce; Juan Antonio Torrero-Gonzalez; Marc Torrent-Moreno edit  doi
isbn  openurl
  Title Call Detail Records for Human Mobility Studies: Taking Stock of the Situation in the “Always Connected Era" Type Conference Article
  Year 2017 Publication Workshop on Big Data Analytics and Machine Learning for Data Communication Networks Abbreviated Journal  
  Volume Issue Pages 43-48  
  Keywords mobile networks; call detail records; human mobility  
  Abstract The exploitation of cellular network data for studying human mobility has been a popular research topic in the last decade. Indeed, mobile terminals could be considered ubiquitous sensors that allow the observation of human movements on large scale without the need of relying on non-scalable techniques, such as surveys, or dedicated and expensive monitoring infrastructures. In particular, Call Detail Records (CDRs), collected by operators for billing purposes,
have been extensively employed due to their rather large availability, compared to other types of cellular data (e.g., signaling). Despite the interest aroused around this topic, the research community has generally agreed about the scarcity of information provided by CDRs: the position of mobile terminals is logged when some kind of activity (calls, SMS, data connections) occurs, which translates in a picture of mobility somehow biased by the activity degree of users.
By studying two datasets collected by a Nation-wide operator in 2014 and 2016, we show that the situation has drastically changed in terms of data volume and quality. The increase of flat data plans and the higher penetration of “
always connected” terminals have driven up the number of recorded CDRs, providing higher temporal accuracy for users’ locations.
 
  Address UCLA; USA; August 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4503-5054-9 Medium  
  Area Expedition Conference (up) ACMW (SIGCOMM)  
  Notes HuPBA; no menciona Approved no  
  Call Number Admin @ si @ FPT2017 Serial 2980  
Permanent link to this record
 

 
Author Daniel Hernandez; Lukas Schneider; Antonio Espinosa; David Vazquez; Antonio Lopez; Uwe Franke; Marc Pollefeys; Juan C. Moure edit   pdf
openurl 
  Title Slanted Stixels: Representing San Francisco's Steepest Streets} Type Conference Article
  Year 2017 Publication 28th British Machine Vision Conference Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract In this work we present a novel compact scene representation based on Stixels that infers geometric and semantic information. Our approach overcomes the previous rather restrictive geometric assumptions for Stixels by introducing a novel depth model to account for non-flat roads and slanted objects. Both semantic and depth cues are used jointly to infer the scene representation in a sound global energy minimization formulation. Furthermore, a novel approximation scheme is introduced that uses an extremely efficient over-segmentation. In doing so, the computational complexity of the Stixel inference algorithm is reduced significantly, achieving real-time computation capabilities with only a slight drop in accuracy. We evaluate the proposed approach in terms of semantic and geometric accuracy as well as run-time on four publicly available benchmark datasets. Our approach maintains accuracy on flat road scene datasets while improving substantially on a novel non-flat road dataset.  
  Address London; uk; September 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up) BMVC  
  Notes ADAS; 600.118 Approved no  
  Call Number ADAS @ adas @ HSE2017a Serial 2945  
Permanent link to this record
 

 
Author Arash Akbarinia; Raquel Gil Rodriguez; C. Alejandro Parraga edit   pdf
openurl 
  Title Colour Constancy: Biologically-inspired Contrast Variant Pooling Mechanism Type Conference Article
  Year 2017 Publication 28th British Machine Vision Conference Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Pooling is a ubiquitous operation in image processing algorithms that allows for higher-level processes to collect relevant low-level features from a region of interest. Currently, max-pooling is one of the most commonly used operators in the computational literature. However, it can lack robustness to outliers due to the fact that it relies merely on the peak of a function. Pooling mechanisms are also present in the primate visual cortex where neurons of higher cortical areas pool signals from lower ones. The receptive fields of these neurons have been shown to vary according to the contrast by aggregating signals over a larger region in the presence of low contrast stimuli. We hypothesise that this contrast-variant-pooling mechanism can address some of the shortcomings of maxpooling. We modelled this contrast variation through a histogram clipping in which the percentage of pooled signal is inversely proportional to the local contrast of an image. We tested our hypothesis by applying it to the phenomenon of colour constancy where a number of popular algorithms utilise a max-pooling step (e.g. White-Patch, Grey-Edge and Double-Opponency). For each of these methods, we investigated the consequences of replacing their original max-pooling by the proposed contrast-variant-pooling. Our experiments on three colour constancy benchmark datasets suggest that previous results can significantly improve by adopting a contrast-variant-pooling mechanism.  
  Address London; September 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up) BMVC  
  Notes NEUROBIT; 600.068; 600.072 Approved no  
  Call Number Admin @ si @ AGP2017 Serial 2992  
Permanent link to this record
 

 
Author Rada Deeb; Damien Muselet; Mathieu Hebert; Alain Tremeau; Joost Van de Weijer edit   pdf
openurl 
  Title 3D color charts for camera spectral sensitivity estimation Type Conference Article
  Year 2017 Publication 28th British Machine Vision Conference Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Estimating spectral data such as camera sensor responses or illuminant spectral power distribution from raw RGB camera outputs is crucial in many computer vision applications.
Usually, 2D color charts with various patches of known spectral reflectance are
used as reference for such purpose. Deducing n-D spectral data (n»3) from 3D RGB inputs is an ill-posed problem that requires a high number of inputs. Unfortunately, most of the natural color surfaces have spectral reflectances that are well described by low-dimensional linear models, i.e. each spectral reflectance can be approximated by a weighted sum of the others. It has been shown that adding patches to color charts does not help in practice, because the information they add is redundant with the information provided by the first set of patches. In this paper, we propose to use spectral data of
higher dimensionality by using 3D color charts that create inter-reflections between the surfaces. These inter-reflections produce multiplications between natural spectral curves and so provide non-linear spectral curves. We show that such data provide enough information for accurate spectral data estimation.
 
  Address London; September 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up) BMVC  
  Notes LAMP; 600.109; 600.120 Approved no  
  Call Number Admin @ si @ DMH2017b Serial 3037  
Permanent link to this record
 

 
Author Quentin Angermann; Jorge Bernal; Cristina Sanchez Montes; Gloria Fernandez Esparrach; Xavier Gray; Olivier Romain; F. Javier Sanchez; Aymeric Histace edit   pdf
openurl 
  Title Towards Real-Time Polyp Detection in Colonoscopy Videos: Adapting Still Frame-Based Methodologies for Video Sequences Analysis Type Conference Article
  Year 2017 Publication 4th International Workshop on Computer Assisted and Robotic Endoscopy Abbreviated Journal  
  Volume Issue Pages 29-41  
  Keywords Polyp detection; colonoscopy; real time; spatio temporal coherence  
  Abstract Colorectal cancer is the second cause of cancer death in United States: precursor lesions (polyps) detection is key for patient survival. Though colonoscopy is the gold standard screening tool, some polyps are still missed. Several computational systems have been proposed but none of them are used in the clinical room mainly due to computational constraints. Besides, most of them are built over still frame databases, decreasing their performance on video analysis due to the lack of output stability and not coping with associated variability on image quality and polyp appearance. We propose a strategy to adapt these methods to video analysis by adding a spatio-temporal stability module and studying a combination of features to capture polyp appearance variability. We validate our strategy, incorporated on a real-time detection method, on a public video database. Resulting method detects all
polyps under real time constraints, increasing its performance due to our
adaptation strategy.
 
  Address Quebec; Canada; September 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up) CARE  
  Notes MV; 600.096; 600.075 Approved no  
  Call Number Admin @ si @ ABS2017b Serial 2977  
Permanent link to this record
 

 
Author David Vazquez; Jorge Bernal; F. Javier Sanchez; Gloria Fernandez Esparrach; Antonio Lopez; Adriana Romero; Michal Drozdzal; Aaron Courville edit   pdf
openurl 
  Title A Benchmark for Endoluminal Scene Segmentation of Colonoscopy Images Type Conference Article
  Year 2017 Publication 31st International Congress and Exhibition on Computer Assisted Radiology and Surgery Abbreviated Journal  
  Volume Issue Pages  
  Keywords Deep Learning; Medical Imaging  
  Abstract Colorectal cancer (CRC) is the third cause of cancer death worldwide. Currently, the standard approach to reduce CRC-related mortality is to perform regular screening in search for polyps and colonoscopy is the screening tool of choice. The main limitations of this screening procedure are polyp miss-rate and inability to perform visual assessment of polyp malignancy. These drawbacks can be reduced by designing Decision Support Systems (DSS) aiming to help clinicians in the different stages of the procedure by providing endoluminal scene segmentation. Thus, in this paper, we introduce an extended benchmark of colonoscopy image, with the hope of establishing a new strong benchmark for colonoscopy image analysis research. We provide new baselines on this dataset by training standard fully convolutional networks (FCN) for semantic segmentation and significantly outperforming, without any further post-processing, prior results in endoluminal scene segmentation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up) CARS  
  Notes ADAS; MV; 600.075; 600.085; 600.076; 601.281; 600.118 Approved no  
  Call Number ADAS @ adas @ VBS2017a Serial 2880  
Permanent link to this record
 

 
Author Quentin Angermann; Jorge Bernal; Cristina Sanchez Montes; Maroua Hammami; Gloria Fernandez Esparrach; Xavier Dray; Olivier Romain; F. Javier Sanchez; Aymeric Histace edit   pdf
openurl 
  Title Real-Time Polyp Detection in Colonoscopy Videos: A Preliminary Study For Adapting Still Frame-based Methodology To Video Sequences Analysis Type Conference Article
  Year 2017 Publication 31st International Congress and Exhibition on Computer Assisted Radiology and Surgery Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Barcelona; Spain; June 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up) CARS  
  Notes MV; no menciona Approved no  
  Call Number Admin @ si @ ABS2017 Serial 2947  
Permanent link to this record
 

 
Author Debora Gil; Oriol Ramos Terrades; Elisa Minchole; Carles Sanchez; Noelia Cubero de Frutos; Marta Diez-Ferrer; Rosa Maria Ortiz; Antoni Rosell edit   pdf
url  openurl
  Title Classification of Confocal Endomicroscopy Patterns for Diagnosis of Lung Cancer Type Conference Article
  Year 2017 Publication 6th Workshop on Clinical Image-based Procedures: Translational Research in Medical Imaging Abbreviated Journal  
  Volume 10550 Issue Pages 151-159  
  Keywords  
  Abstract Confocal Laser Endomicroscopy (CLE) is an emerging imaging technique that allows the in-vivo acquisition of cell patterns of potentially malignant lesions. Such patterns could discriminate between inflammatory and neoplastic lesions and, thus, serve as a first in-vivo biopsy to discard cases that do not actually require a cell biopsy.

The goal of this work is to explore whether CLE images obtained during videobronchoscopy contain enough visual information to discriminate between benign and malign peripheral lesions for lung cancer diagnosis. To do so, we have performed a pilot comparative study with 12 patients (6 adenocarcinoma and 6 benign-inflammatory) using 2 different methods for CLE pattern analysis: visual analysis by 3 experts and a novel methodology that uses graph methods to find patterns in pre-trained feature spaces. Our preliminary results indicate that although visual analysis can only achieve a 60.2% of accuracy, the accuracy of the proposed unsupervised image pattern classification raises to 84.6%.

We conclude that CLE images visual information allow in-vivo detection of neoplastic lesions and graph structural analysis applied to deep-learning feature spaces can achieve competitive results.
 
  Address Quebec; Canada; September 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up) CLIP  
  Notes IAM; 600.096; 600.075; 600.145 Approved no  
  Call Number Admin @ si @ GRM2017 Serial 2957  
Permanent link to this record
 

 
Author Alexey Dosovitskiy; German Ros; Felipe Codevilla; Antonio Lopez; Vladlen Koltun edit   pdf
openurl 
  Title CARLA: An Open Urban Driving Simulator Type Conference Article
  Year 2017 Publication 1st Annual Conference on Robot Learning. Proceedings of Machine Learning Abbreviated Journal  
  Volume 78 Issue Pages 1-16  
  Keywords Autonomous driving; sensorimotor control; simulation  
  Abstract We introduce CARLA, an open-source simulator for autonomous driving research. CARLA has been developed from the ground up to support development, training, and validation of autonomous urban driving systems. In addition to open-source code and protocols, CARLA provides open digital assets (urban layouts, buildings, vehicles) that were created for this purpose and can be used freely. The simulation platform supports flexible specification of sensor suites and environmental conditions. We use CARLA to study the performance of three approaches to autonomous driving: a classic modular pipeline, an endto-end
model trained via imitation learning, and an end-to-end model trained via
reinforcement learning. The approaches are evaluated in controlled scenarios of
increasing difficulty, and their performance is examined via metrics provided by CARLA, illustrating the platform’s utility for autonomous driving research.
 
  Address Mountain View; CA; USA; November 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up) CORL  
  Notes ADAS; 600.085; 600.118 Approved no  
  Call Number Admin @ si @ DRC2017 Serial 2988  
Permanent link to this record
 

 
Author Sergio Alloza; Flavio Escribano; Sergi Delgado; Ciprian Corneanu; Sergio Escalera edit   pdf
url  openurl
  Title XBadges. Identifying and training soft skills with commercial video games Improving persistence, risk taking & spatial reasoning with commercial video games and facial and emotional recognition system Type Conference Article
  Year 2017 Publication 4th Congreso de la Sociedad Española para las Ciencias del Videojuego Abbreviated Journal  
  Volume 1957 Issue Pages 13-28  
  Keywords Video Games; Soft Skills; Training; Skilling Development; Emotions; Cognitive Abilities; Flappy Bird; Pacman; Tetris  
  Abstract XBadges is a research project based on the hypothesis that commercial video games (nonserious games) can train soft skills. We measure persistence, patial reasoning and risk taking before and after subjects paticipate in controlled game playing sessions.
In addition, we have developed an automatic facial expression recognition system capable of inferring their emotions while playing, allowing us to study the role of emotions in soft skills acquisition. We have used Flappy Bird, Pacman and Tetris for assessing changes in persistence, risk taking and spatial reasoning respectively.
Results show how playing Tetris significantly improves spatial reasoning and how playing Pacman significantly improves prudence in certain areas of behavior. As for emotions, they reveal that being concentrated helps to improve performance and skills acquisition. Frustration is also shown as a key element. With the results obtained we are able to glimpse multiple applications in areas which need soft skills development.
 
  Address Barcelona; June 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up) COSECIVI; CEUR-WS  
  Notes HUPBA; no menciona Approved no  
  Call Number Admin @ si @ AED2017 Serial 3065  
Permanent link to this record
 

 
Author Lluis Gomez; Y. Patel; Marçal Rusiñol; C.V. Jawahar; Dimosthenis Karatzas edit   pdf
url  doi
openurl 
  Title Self‐supervised learning of visual features through embedding images into text topic spaces Type Conference Article
  Year 2017 Publication 30th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract End-to-end training from scratch of current deep architectures for new computer vision problems would require Imagenet-scale datasets, and this is not always possible. In this paper we present a method that is able to take advantage of freely available multi-modal content to train computer vision algorithms without human supervision. We put forward the idea of performing self-supervised learning of visual features by mining a large scale corpus of multi-modal (text and image) documents. We show that discriminative visual features can be learnt efficiently by training a CNN to predict the semantic context in which a particular image is more probable to appear as an illustration. For this we leverage the hidden semantic structures discovered in the text corpus with a well-known topic modeling technique. Our experiments demonstrate state of the art performance in image classification, object detection, and multi-modal retrieval compared to recent self-supervised or natural-supervised approaches.  
  Address Honolulu; Hawaii; July 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up) CVPR  
  Notes DAG; 600.084; 600.121 Approved no  
  Call Number Admin @ si @ GPR2017 Serial 2889  
Permanent link to this record
 

 
Author Cesar de Souza; Adrien Gaidon; Yohann Cabon; Antonio Lopez edit   pdf
doi  openurl
  Title Procedural Generation of Videos to Train Deep Action Recognition Networks Type Conference Article
  Year 2017 Publication 30th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 2594-2604  
  Keywords  
  Abstract Deep learning for human action recognition in videos is making significant progress, but is slowed down by its dependency on expensive manual labeling of large video collections. In this work, we investigate the generation of synthetic training data for action recognition, as it has recently shown promising results for a variety of other computer vision tasks. We propose an interpretable parametric generative model of human action videos that relies on procedural generation and other computer graphics techniques of modern game engines. We generate a diverse, realistic, and physically plausible dataset of human action videos, called PHAV for ”Procedural Human Action Videos”. It contains a total of 39, 982 videos, with more than 1, 000 examples for each action of 35 categories. Our approach is not limited to existing motion capture sequences, and we procedurally define 14 synthetic actions. We introduce a deep multi-task representation learning architecture to mix synthetic and real videos, even if the action categories differ. Our experiments on the UCF101 and HMDB51 benchmarks suggest that combining our large set of synthetic videos with small real-world datasets can boost recognition performance, significantly
outperforming fine-tuning state-of-the-art unsupervised generative models of videos.
 
  Address Honolulu; Hawaii; July 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up) CVPR  
  Notes ADAS; 600.076; 600.085; 600.118 Approved no  
  Call Number Admin @ si @ SGC2017 Serial 3051  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: