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Abstract. Colorectal cancer is the second cause of cancer death in
United States: precursor lesions (polyps) detection is key for patient
survival. Though colonoscopy is the gold standard screening tool, some
polyps are still missed. Several computational systems have been pro-
posed but none of them are used in the clinical room mainly due to com-
putational constraints. Besides, most of them are built over still frame
databases, decreasing their performance on video analysis due to the lack
of output stability and not coping with associated variability on image
quality and polyp appearance. We propose a strategy to adapt these
methods to video analysis by adding a spatio-temporal stability mod-
ule and studying a combination of features to capture polyp appearance
variability. We validate our strategy, incorporated on a real-time detec-
tion method, on a public video database. Resulting method detects all
polyps under real time constraints, increasing its performance due to our
adaptation strategy.

Keywords: Polyp detection, colonoscopy, real time, spatio temporal co-
herence

1 Introduction

Colorectal cancer (CRC) is the second leading cause of cancer death in United
States, causing about 49,190 deaths during 2016 [1]. CRC’s early diagnose is
crucial for patient’s survival, as precursor lesions (known as polyps) may degen-
erate into cancer over time. Several techniques have been proposed for lesion
screening, such as Wireless Capsule Endoscopy (WCE) or Virtual Colonoscopy
(VC) but colonoscopy is still considered as the gold standard tool as it can detect
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lesions of any size (contrary to VC) and it allows lesion detection and removal
during the same procedure (contrary to WCE). Nevertheless, colonoscopy has
its own drawbacks being the most relevant of them polyp miss-rate, reported to
be up to 22 % for the case of small size or flat polyps [10].

Three types of approaches have been tackled to overcome these drawbacks:
1) improvement of endoscopic devices (magnification endoscopes [6]), 2) the
development of new imaging technologies such as virtual chromoendoscopy [12,
7] and 3) the proposal of computational support systems for colonoscopy aiming
to support clinicians during/after the procedure.

Regarding computational systems, several efforts have already tackled auto-
matic polyp detection in colonoscopy videos, ranging from classical hand-crafted
shape-based methods [4] to pure machine learning approaches [8, 2]). Recently,
trending techniques such as deep convolutional networks have been also pro-
posed [13, 14] and a comparison between a large number of them was presented
in [5] in the context of a global polyp detection challenge.

Despite the large number of approaches, none of them, to the best of our
knowledge, are currently used in the exploration room due to : 1) not meeting
real-time constraints, 2) not being tested on full length colonoscopy procedures
and 3) being developed using still frame data (as fully public annotated video
databases are not available). Regarding the latter, development over still frame
data present the following problems associated to video analysis: absence of
temporal coherence in method output and lack of adaption to higher variability
in structures appearance (polyps and other elements) and image quality.

We present in this paper a methodology to adapt existing still-frame based
polyp detection methods to video analysis. Our strategy consists of the addi-
tion of a spatio-temporal coherence module to stabilize methods output and the
combination of different feature types to capture polyp appearance variability
throughout a video. We integrate our strategy over an real-time polyp detection
method [2]; the whole methodology is validated over a fully publicly annotated
video database [3]. This validation is performed using a set of performance met-
rics chosen to fully represent method performance.

The structure of the rest of this paper is as follows. Section 2 introduces the
adaptation strategy as well as the reference polyp detection method. In Section
3 we detail the experimental setup, results of which are shown in Section 4. We
discuss in-depth the performance of the proposed methodology in Section 5. We
finally the main conclusions of this study are drawn in Section 6.

2 Method

2.1 Reference Real-time Still Frame-based Polyp Detection Method

As explained in Section 1, we will use as reference method the one proposed in [2]
which offers a good tradeoff between performance and associated processing time
(0.039ms, meeting real-time constrains over 25fps videos). This active learning
methodology consists of two different stages: (i) a Cascade AdaBoost learning
step for the computation of a classifier, and (ii) a strengthening strategy based
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Fig. 1. Still-frame processing pipeline

on active learning principle using Hard Negative examples [16]. Active learning is
used to reinforce the classification performance by adding new negative examples
produced by the initial classifier to the learning database.

This initial classifier is trained using six patches from each image of the
training database (CVC-ClinicDB [4]) : one positive patch covering completely
the polyp and five negative ones without any polyp content. We use the Cascade
Adaboost strategy (10 stages, with for each of them a targeted true positive rate
of 99% and a false positive rate of 50%) to obtain this initial classifier, which
is tested as a polyp detector function on each of the images of the complete
dataset. As a result, the classifier provides a set of regions of interest (RoIs)
where it predicts polyp presence. We compare prediction results over ground
truth; all RoIs that do not contain a polyp are fed into the learning process as
hard negative training patches so a new Cascade Adaboost classifier is created.
An overview of the full processing training/learning scheme is shown Fig. 1. This
process is repeated several times to obtain an optimal performance level. The
interested reader can find a full description of the methodology at [2].

2.2 Combination of Feature Types

The use of texture-based descriptors (Local Binary Patterns) was proposed in
[2] due the polyp appeared different enough from its surroundings due to the
good selection of polyp shots from the corresponding videos. Unfortunately, in
full video analysis, the number of false alarms grow due to variations in image
quality and polyp appearance and due to the presence of other endoluminal
scene elements which can deviate detectors’ attention from the polyp.

The reference method allows an straightforward aggregation of other fea-
tures to complement LBP though it is important to consider the potential im-
pact in computational time of these new features. We propose to combine LBP
with Haar features [11] because of the following two reasons: first, they can
be fastly computed by using the usual ”integral image strategy”. Second, they
can offer complementary information to LBP in a way such if LBP are more
sensitive to the gradient information inside an image, Haar, by computing con-
trast/homogeneity parameter, can be related to geometrical local properties of
a given RoI.
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(a) (b)

Fig. 2. Spatio-temporal coherence module: (a) Example of spatio temporal instability
in the output of still frame polyp detection methods when applied on full sequences. (b)
Graphical explanation of the proposed solution: Green boxes represent the output in
the current frame, blue boxes represents outputs in the previous frames. Green dashed
lines connect similar RoIs in consecutive frames (kept in method output) whereas red
ones represent unconnected RoIs between consecutive frames (removed in the output).

2.3 Spatio-temporal Coherence Module

One big drawback of the use of still-frame based methods for video analysis is
that, by default, they do not consider information of previous frames to deter-
mine the output of the current ones. Due to this, a given method can show a
performance like the one shown in Fig. 2 (a) where we can observe that the
method is not able to provide a stable output between consecutive frames.

To mitigate this, we propose the decision tree shown in Fig. 3. It is important
to mention that to calculate the initial output for a given frame we first perform
intra-frame block fusion to only provide as output candidates those RoIs where
more individual outputs have been provided by the classifier. Once this is done,
when calculating the final output for a given frame, the system considers also
the RoIs provided by the classifier in the two previous frames in a way such if
RoIs from the previous frame overlap with RoIs provided for the actual frame,
these RoIs are kept to generate the final output. If it is not the case, those RoIs
without spatio-temporal overlap are not included in the final output.

Fig. 3. Decision tree implemented to warrantee spatio-temporal coherence in method
output
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3 Experimental Setup

3.1 Validation Database

We validate our complete methodology over the first fully publicly available video
annotated database (CVC-ClinicVideoDB) database, which comprises 18 differ-
ent standard definition video sequences all showing a polyp. These sequences
have been recorded using OLYMPUS QF190 endoscopes and Exera III video-
grabber. CVC-ClinicVideoDB contains 10924 frames of size 768× 576, of which
9221 contain a polyp. Table 1 shows statistics of each of the videos of CVC-
ClinicVideoDB, including Paris morphology [9] of the different polyps. Ground
truth for each frame corresponds to a binary image in which white pixels cor-
respond to polyp pixels in the image (images without polyps do not have any
white pixels). CVC-ClinicVideoDB ground truth consists of an ellipse approx-
imating polyp boundary. We show some examples of original images and their
corresponding ground truth in Fig. 4.

3.2 Performance Metrics

Before defining the different metrics used to assess method performance, it is
worth to mention that the output of the method for a particular frame consist
of a series of bounding boxes representing the different RoIs provided by the
classifier.

Following guidelines depicted in [5], we will use as first indication of correct
detection (True Positive, TP) if the centroid of the RoI falls within the polyp
mask. As in this first version of the database we provide ellipses for a weak
labelling of the polyp, we have incorporated two additional criteria to determine

Video PF NPF Paris Video PF NPF Paris Video PF NPF Paris

1 386 112 0-Is 7 338 103 0-Is 13 620 4 0-Is
2 597 176 0-Is 8 405 44 0-IIa 14 2015 45 0-Is
3 819 153 0-Is 9 532 19 0-Ip 15 360 215 0-Is
4 350 40 0-Is 10 762 78 0-IIa 16 366 5 0-Is
5 412 78 0-Is 11 370 130 0-Is 17 651 146 0-IIa
6 522 335 0-Ip 12 261 124 0-IIa 18 259 122 0-Ip

Table 1. Statistics of CVC-ClinicVideoDB database. PF stands for polyp frames,
NPF for non-polyp frames and Paris represents morphology of the polyp according to
Paris classification (0-Is for sessile polyps, 0-Ip for pedunculated polyps and 0-IIa for
flat-elevated polyps).

(a) (b) (c) (d)

Fig. 4. Examples of (a,c) original image and (b,d) associated ground truth.
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a TP: 1) having pixel-wise precision within the RoI is higher than 50% (to cover
the case of very big polyps against an small RoI) or 2) having a small distance
to the centroid of the RoI to the border of the ground truth mask or a pixel-wise
recall higher than 50% (to cover the case of small polyps enclosed within a large
ground truth area). It is important to mention that we will only account one
TP per polyp region in the image, no matter how many RoIs detect it. In case a
polyp in a frame is not detected, we have a False Negative (FN) - we can have as
many FNs as polyps in the image -. RoIs without overlap with a polyp region are
accounted as False Positives (FP) - there can be more than one FP per image -
and, finally, the absence of RoIs in a frame without a polyp is defined as a True
Negative (TN).

From these definitions, we can calculate the following aggregation metrics:
1) Precision (Prec = 100 ∗ TP

TP+FP ), 2) Recall (Rec = 100 ∗ TP
TP+FN ) and 3)

F1-score (F1 = 2∗Prec∗Rec
Prec+Rec ).

We also calculate the following metrics to account for clinical usability:

– Polyp Detection Rate (PDR) checks whether a method is able to detect the
polyp at least once in a sequence, following guidelines depicted in [15].

– Mean Processing Time per frame (MPT). Considering videos are recorded at
25 fps, 40 milliseconds is the maximum time processing of a new frame can
take to avoid delaying the intervention. MPT includes both frame processing
time as well as displaying the results on the monitor.

– Mean Number of False Positives per frame (MNFP).
– Reaction Time (RT) represents the delay (in frames and seconds considering

a frame rate of 25fps) between first appearance of the polyp in the sequence
and the first correct detection provided by the method [4].

4 Results

4.1 Quantitative Results

We present quantitative results in Table 2, broken down by the different aspects
we wanted to test in the study (impact of adaptation strategy, computational
efficiency). Before introducing a breakdown of the results, it is important to men-
tion that, as the methodology over which we have incorporated our adaptation
strategy incorporates strengthening stages, we will distinguish each strengthen-
ing iteration with a cardinal index starting by 0 in a way such classifier Ni will
refer to a classifier computed with i strengthening steps.

The first important result to be extracted from Table 2 is that the method-
ology is able to detect all different polyps in the different sequences at least in
one frame, using the same definition proposed in [15]. The basic configuration
of the system, as presented in [2], achieves the smallest reaction time.

With respect of the type of features used, we can observe a positive difference
associated to the use of Haar features which leads to a great reduction in the
number of false positives while keeping real-time constraints and a similar recall
(higher F1-score). LBP offers a slower processing time (140ms per image) and
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Method PDR MPT MNFP Prec Rec F1 RT

Impact of the type of feature descriptor used

LBPN0 100% 140ms 3.5 12.42% 54.65% 20.24% 7.2 [0.3 sec]

HaarN0 100% 24ms 1.4 23.29% 46.82% 31.10% 17.5 [0.7 sec]

Impact of spatio-temporal coherence (STC)

LBPN0 no STC 100% 140ms 3.5 12.42% 54.65% 20.24% 7.2 [0.3 sec]

LBPN0 100% 140ms 1.9 16.25% 41.25% 23.31% 35.0 [1.4 sec]

HaarN0 no STC 100% 24ms 1.4 23.29% 46.82% 31.10% 17.5 [0.7 sec]

HaarN0 100% 36ms 0.9 27.02% 39.61% 32.12% 38.3 [1.5 sec]

Impact of network strengthening

LBPN0 100% 140ms 1.9 16.25% 41.25% 23.31% 35.0 [1.4 sec]

LBPN1 100% 160ms 1.1 27.11% 46.02% 34.12% 43.7 [1.7 sec]

LBPN2 100% 162ms 0.7 29.88% 34.96% 32.22% 45.9 [1.8 sec]

HaarN0 100% 36ms 0.9 27.02% 39.61% 32.12% 38.3 [1.5 sec]

HaarN1 100% 21ms 0.6 39.14% 42.56% 40.78% 27.3 [1.1 sec]

Impact of feature aggregation)

LBPN2 100% 162ms 0.7 29.88% 34.96% 32.22% 45.9 [1.8 sec]

HaarN1 100% 21ms 0.6 39.14% 42.56% 40.78% 27.3 [1.1 sec]

Aggregation 100% 185ms 1.1 30.39% 52.40% 38.47% 15.0 [0.6 sec]

Table 2. Overall performance results.

an excessive number of false alarms (around 3.5 FP per image), which makes its
use not compatible with a clinical use.

We broke down the results according to polyp morphology, under the as-
sumption that Haar features should perform better for those types in which the
contour can be clearly observed. We present results of this side experiment in
Table 3. On the one hand, we can observe how LBP achieves a higher F1-score
for flat polyps (higher recall for a similar precision); we associate Haar’s worse
performance to the lack of strong contours. In this case, LBP takes advantage of
the difference in pattern between polyp and mucosa. On the other hand, for pe-
duncular polyps in which their contours are clearly recognizable, we can observe
a clearly superior performance of Haar in all performance metrics, especially
with respect to RT (difference of more than 3.5 seconds with respect to LBP).

The use of our spatio-temporal coherence module results on an improvement
in the overall performance for both descriptors, decreasing in a significant way
the average number of FPs per image (lower than one for Haar descriptor). We
can also notice that, for both descriptors, the average detection latency is now
more than a second. We associate this to false positives damaging posterior good
detections. Only Haar presents a MCT compatible with real time constraints
(36ms). Considering the overall positive impact of spatio temporal coherence, in
the following it will be applied for all experiments.

Though clearly more specific to the reference methodology used, Table 2
shows the benefit of the strengthening strategy for both descriptors. The overall
performance is improved though, for the case of LBP, the mean computation
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Method MNFP Prec Rec F1 RT

0-Is (sessile, 11 polyps)

LBPN1 1.3 23.93% 40.84% 30.18% 40.6 [1.6 sec]

HaarN1 0.6 38.01% 41.32% 39.59% 22.3 [0.9 sec]

Aggregation 1.2 27.93% 48.18% 35.36% 21 [0.8 sec]

0-Ip (peduncular, 3 polyps)

LBPN1 1.0 31.4% 51.10% 38.90% 89.0 [3.6 sec]

HaarN1 0.5 50.46% 57.50% 53.75% 4.0 [0.1 sec]

Aggregation 1.1 40.28% 64.73% 49.66% 4.0 [0.1 sec]

0-IIa (flat, 4 polyps)

LBPN1 1.1 34.62% 59.35% 43.73% 18.0 [0.7 sec]

HaarN1 0.6 35.14% 37.08% 36.08% 58.5 [2.3 sec]

Aggregation 0.8 32.32% 58.10% 41.54% 7.0 [0.3 sec]

Table 3. Impact of Paris morphology on overall performance results. N1 classifiers are
used for both for LBP and Haar features, as well as spatio-temporal coherence.

time remains incompatible with a clinical use, and the detection latency is not
far from 2 seconds for LBPN2 classifier. Haar descriptors definitely appear here
more compatible with a daily routine use since for HaarN1 the mean latency is
only of 1.1s but with 14 videos (on the overall 18) presenting with an average RT
lower than 0.4s; the mean computation time is only of 21ms with a max value of
only 25ms for video 14 and, finally, the overall performance levels obtained are
the best from all the experiments presented in this paper in terms of trade-off
between true and false alarms.

One of the reasons of studying the use of different type of features was to
observe whether the combination of several feature types could lead to an over-
all performance improvement. Our experiments yield an interesting result: the
combination of LBP and Haar classifiers leads to a significant increase of the
TP detection rate since the Recall reaches its highest value considering the all
set of experiments achieved in this section. Results indicate that LBP and Haar
can detect different kind of polyp (RoIs) in a complementary way. Neverthe-
less, from a clinical applicability perspective, even if the mean RT is only of
0.7s when combining both classifiers, as expected, the mean processing time per
frame is constrained by LBP classifier performance which is of an average value
of more than 185ms. Finally, we can observe in Table 3 how the combination
of feature descriptors help to improve recall scores and to reduce computation
time regardless polyp morphology.

The first conclusion that we can extract from the analysis of the results
presented is that our proposed adaptation strategy does improve the performance
of still-frame based methods when dealing with video analysis. The use of spatio-
temporal coherence leads to a reduction in the number of false positive alarms
whereas the combination of different types of features lead to an increase in
the number of polyp frames correctly detected. It is important to mention that
some of these improvements come at the cost of losing real-time capabilities
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(a) (b) (c) (d)

Fig. 5. Differences in performance associated to the specific feature descriptor used:
(a,c) show the output of Haar descriptor whereas (b,d) show the output achieved using
LBP as descriptor.

and efforts should be made to improve the computational cost of some of the
proposed improvements (such as the combination of LBP and Haar features).

5 Discussion

5.1 Impact of Adaptation Strategy on Method’s Performance

With respect of the specific feature descriptor used, we observed better perfor-
mance related to the use of Haar features. We associate this to the fact that in
video sequences, differences in texture between mucosa and the polyp become
less relevant and, in this case, the presence of strong boundaries delimiting the
different structures such as polyps in the image may appear more useful than
texture analysis. Nevertheless, it has to be taken into account LBP’s offers best
performance for the case of flat polyps, which are those recurrently mentioned
by clinicians as one of the main causes of polyp miss-rate. If the decision on the
descriptor to use depends on real time constraints, Haar is the way to go but, as
Fig. 5 (a-d) shows, the combination of both descriptors might increase overall
performance.

With respect to spatio-temporal coherence module, its inclusion has led to
a reduction in the number of false alarms but it has also lead to a decrease
in performance scores on Recall or RT. We associate this decrease to isolated
correct detections not kept through consecutive frames therefore leading to miss
the polyp in the whole subsequence of frames. In this case efforts should be
made to clearly identify the polyp target to be tracked in order to only mitigate
false alarms and not those correct ones. Consequently, efforts should be put on
identifying and tackling appropriately the source of those false alarms which
might involve, as some authors propose [4], considering the impact of other
elements of the endoluminal scene.

5.2 Frame-based Analysis vs. Clinical Applicability

We have presented in Section 3 two sets of metrics to represent the performance
of a given method. It is clear that clinicians will be mainly interested on whether
the computational system is able to detect the polyp once it appears in the image.
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Fig. 6. Evolution of the AvPDR metric with respect to the threshold value applied to
the Recall on each video.

As the polyp is detected, their attention will deviate to other areas in the image.
Considering this, a good performing method could be one that only detects the
polyp in one frame being this frame the first in which the polyp appears in the
sequence. As this kind of system does not warrantee good performance under
exploratory conditions, frame-based and clinical applicability metrics should be
combined to represent actual method performance.

To solve this, we propose to combine the most clinically relevant metric
(PDR) with Recall into a new metric representing both whether the method is
able to detect the polyp and that this detection occurs in a relevant number
of frames. We define the Average Polyp Detection Rate (AvPDR) to checks
whether a method is able to detect the polyp in a set of sequences with respect
to a minimum value for Recall. We calculate AvPDR in the following way: for
each video we set individual (IndPDR) score to 1 if Recall score for the particular
video surpasses Recthres value. Final AvPDR score for the whole dataset will
be calculated as the mean of individual InDPRs. To illustrate this, Fig. 6 shows
the evolution of the AvPDR for different values of the Recall and for the three
last computed classifiers LBPN2, HaarN1 and aggregation of both.

As it can be seen, the AvPDR brings very interesting insights on the ca-
pacity of a given method to detect the polyp with a given minimum Recall. In
our case, the aggregation of LBPN2 and HaarN1 classifiers makes possible to
systematically detect the polyp in all videos with a minimum Recall of 20%.

5.3 Analysis of Methods’ Performance in the Context of the
State-of-the-art

As mentioned in Section 1, there are many available polyp detection methods
in the literature, some of them already showing quite good performance as it
can be observed in [5]. The main objective of our work was not to develop the
best polyp detection method but to show how still frame-based methodologies
databases could still be valid for full sequences analysis.

Due to the lack of publicly available annotated video databases, we can only
compare global performance scores of different methods even if they have not
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been tested under the same conditions. In this sense, our approach obtains similar
performances in PDR and Reaction time than those achieved by the best meth-
ods presented in [5]. As mentioned before, we are not worried here about frame-
based performance (though it has to be improved for sure) but on whether the
system can be of actual clinical use hence the focus on real time performance. We
also believe that, once public video databases become more available, methods
performance (especially machine learning ones) will benefit from being trained
on them as they will cover a wide variety of polyp appearances.

Finally and to assess actual clinical applicability of a given method on the
exploration room, we believe efforts should also be made on incorporating full
realistic interventions as part of the databases in a way such once the polyp is
found the clinician progresses through the colon without the need of observing
the polyp in different views, typical from still frame database creation protocols,

6 Conclusions

We have presented in this paper a study on how to adapt still frame based polyp
detection methodologies to full sequences analysis. Our adaptation strategy in-
volves the addition of a spatio-temporal coherence module and the combination
of feature descriptors. We have tested the impact (in performance and computa-
tional efficiency) of this adaptation strategy implementing them over an already
existing real time polyp detection method trained on still frame based databases.
We validate the complete methodology over a newly published video database
of 18 sequences using a set of clinical and technical performance metrics.

The main conclusion extracted from this study is that the addition of a spatio-
temporal coherence module and the combination of feature descriptors lead to
an overall improvement on method performance over full sequences; once these
modules are applied over the reference method, the proposed methodology is
able to detect all different polyps in at least one frame in the sequence.

It has to be noted that the best performing configuration is not ready for
clinical use due to not meeting real time constraints; efforts should be made to
increase the computational efficiency of the different modules proposed. Apart
from this, we also foresee the following areas of improvement: (i) add an image
preprocessing stage to mitigate the impact of other elements of the endoluminal
scene (which can impact when the first correct detection occurs) , (ii) incorporate
computationally efficient camera motion tracking methods to improve spatio-
temporal coherence and (iii) study the possibility of incorporating additional
feature descriptors to improve overall performance. Moreover, our method should
be trained over video sequences in order to capture better the great variability
of polyp appearance within a same sequence.
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