toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Lluis Gomez; Y. Patel; Marçal Rusiñol; C.V. Jawahar; Dimosthenis Karatzas edit   pdf
url  doi
openurl 
  Title Self‐supervised learning of visual features through embedding images into text topic spaces Type Conference Article
  Year 2017 Publication 30th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract End-to-end training from scratch of current deep architectures for new computer vision problems would require Imagenet-scale datasets, and this is not always possible. In this paper we present a method that is able to take advantage of freely available multi-modal content to train computer vision algorithms without human supervision. We put forward the idea of performing self-supervised learning of visual features by mining a large scale corpus of multi-modal (text and image) documents. We show that discriminative visual features can be learnt efficiently by training a CNN to predict the semantic context in which a particular image is more probable to appear as an illustration. For this we leverage the hidden semantic structures discovered in the text corpus with a well-known topic modeling technique. Our experiments demonstrate state of the art performance in image classification, object detection, and multi-modal retrieval compared to recent self-supervised or natural-supervised approaches.  
  Address Honolulu; Hawaii; July 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPR  
  Notes DAG; 600.084; 600.121 Approved no  
  Call Number Admin @ si @ GPR2017 Serial 2889  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: