toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Giovanni Maria Farinella; Petia Radeva; Jose Braz edit  openurl
  Title Proceedings of the 15th International Joint Conference on Computer Vision; Imaging and Computer Graphics Theory and Applications Type Book Whole
  Year 2020 Publication Proceedings of the 15th International Joint Conference on Computer Vision; Imaging and Computer Graphics Theory and Applications; VISIGRAPP 2020 Abbreviated Journal  
  Volume 5 Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number Admin @ si @ FRB2020b Serial 3547  
Permanent link to this record
 

 
Author (down) Gioacchino Vino; Angel Sappa edit  doi
isbn  openurl
  Title Revisiting Harris Corner Detector Algorithm: a Gradual Thresholding Approach Type Conference Article
  Year 2013 Publication 10th International Conference on Image Analysis and Recognition Abbreviated Journal  
  Volume 7950 Issue Pages 354-363  
  Keywords  
  Abstract This paper presents an adaptive thresholding approach intended to increase the number of detected corners, while reducing the amount of those ones corresponding to noisy data. The proposed approach works by using the classical Harris corner detector algorithm and overcome the difficulty in finding a general threshold that work well for all the images in a given data set by proposing a novel adaptive thresholding scheme. Initially, two thresholds are used to discern between strong corners and flat regions. Then, a region based criteria is used to discriminate between weak corners and noisy points in the midway interval. Experimental results show that the proposed approach has a better capability to reject false corners and, at the same time, to detect weak ones. Comparisons with the state of the art are provided showing the validity of the proposed approach.  
  Address Póvoa de Varzim; Portugal; June 2013  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-39093-7 Medium  
  Area Expedition Conference ICIAR  
  Notes ADAS; 600.055 Approved no  
  Call Number Admin @ si @ ViS2013 Serial 2562  
Permanent link to this record
 

 
Author (down) Giacomo Magnifico; Beata Megyesi; Mohamed Ali Souibgui; Jialuo Chen; Alicia Fornes edit   pdf
url  openurl
  Title Lost in Transcription of Graphic Signs in Ciphers Type Conference Article
  Year 2022 Publication International Conference on Historical Cryptology (HistoCrypt 2022) Abbreviated Journal  
  Volume Issue Pages 153-158  
  Keywords transcription of ciphers; hand-written text recognition of symbols; graphic signs  
  Abstract Hand-written Text Recognition techniques with the aim to automatically identify and transcribe hand-written text have been applied to historical sources including ciphers. In this paper, we compare the performance of two machine learning architectures, an unsupervised method based on clustering and a deep learning method with few-shot learning. Both models are tested on seen and unseen data from historical ciphers with different symbol sets consisting of various types of graphic signs. We compare the models and highlight their differences in performance, with their advantages and shortcomings.  
  Address Amsterdam, Netherlands, June 20-22, 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference HystoCrypt  
  Notes DAG; 600.121; 600.162; 602.230; 600.140 Approved no  
  Call Number Admin @ si @ MBS2022 Serial 3731  
Permanent link to this record
 

 
Author (down) Gholamreza Anbarjafari; Sergio Escalera edit  url
isbn  openurl
  Title Human-Robot Interaction: Theory and Application Type Book Whole
  Year 2018 Publication Human-Robot Interaction: Theory and Application Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-78923-316-2 Medium  
  Area Expedition Conference  
  Notes HUPBA Approved no  
  Call Number Admin @ si @ AnE2018 Serial 3216  
Permanent link to this record
 

 
Author (down) German Ros; Sebastian Ramos; Manuel Granados; Amir Bakhtiary; David Vazquez; Antonio Lopez edit   pdf
url  doi
openurl 
  Title Vision-based Offline-Online Perception Paradigm for Autonomous Driving Type Conference Article
  Year 2015 Publication IEEE Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages 231 - 238  
  Keywords Autonomous Driving; Scene Understanding; SLAM; Semantic Segmentation  
  Abstract Autonomous driving is a key factor for future mobility. Properly perceiving the environment of the vehicles is essential for a safe driving, which requires computing accurate geometric and semantic information in real-time. In this paper, we challenge state-of-the-art computer vision algorithms for building a perception system for autonomous driving. An inherent drawback in the computation of visual semantics is the trade-off between accuracy and computational cost. We propose to circumvent this problem by following an offline-online strategy. During the offline stage dense 3D semantic maps are created. In the online stage the current driving area is recognized in the maps via a re-localization process, which allows to retrieve the pre-computed accurate semantics and 3D geometry in realtime. Then, detecting the dynamic obstacles we obtain a rich understanding of the current scene. We evaluate quantitatively our proposal in the KITTI dataset and discuss the related open challenges for the computer vision community.  
  Address Hawaii; January 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area ACDC Expedition Conference WACV  
  Notes ADAS; 600.076 Approved no  
  Call Number ADAS @ adas @ RRG2015 Serial 2499  
Permanent link to this record
 

 
Author (down) German Ros; Laura Sellart; Joanna Materzynska; David Vazquez; Antonio Lopez edit   pdf
doi  openurl
  Title The SYNTHIA Dataset: A Large Collection of Synthetic Images for Semantic Segmentation of Urban Scenes Type Conference Article
  Year 2016 Publication 29th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 3234-3243  
  Keywords Domain Adaptation; Autonomous Driving; Virtual Data; Semantic Segmentation  
  Abstract Vision-based semantic segmentation in urban scenarios is a key functionality for autonomous driving. The irruption of deep convolutional neural networks (DCNNs) allows to foresee obtaining reliable classifiers to perform such a visual task. However, DCNNs require to learn many parameters from raw images; thus, having a sufficient amount of diversified images with this class annotations is needed. These annotations are obtained by a human cumbersome labour specially challenging for semantic segmentation, since pixel-level annotations are required. In this paper, we propose to use a virtual world for automatically generating realistic synthetic images with pixel-level annotations. Then, we address the question of how useful can be such data for the task of semantic segmentation; in particular, when using a DCNN paradigm. In order to answer this question we have generated a synthetic diversified collection of urban images, named SynthCity, with automatically generated class annotations. We use SynthCity in combination with publicly available real-world urban images with manually provided annotations. Then, we conduct experiments on a DCNN setting that show how the inclusion of SynthCity in the training stage significantly improves the performance of the semantic segmentation task  
  Address Las Vegas; USA; June 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPR  
  Notes ADAS; 600.085; 600.082; 600.076 Approved no  
  Call Number ADAS @ adas @ RSM2016 Serial 2739  
Permanent link to this record
 

 
Author (down) German Ros; Laura Sellart; Gabriel Villalonga; Elias Maidanik; Francisco Molero; Marc Garcia; Adriana Cedeño; Francisco Perez; Didier Ramirez; Eduardo Escobar; Jose Luis Gomez; David Vazquez; Antonio Lopez edit  url
openurl 
  Title Semantic Segmentation of Urban Scenes via Domain Adaptation of SYNTHIA Type Book Chapter
  Year 2017 Publication Domain Adaptation in Computer Vision Applications Abbreviated Journal  
  Volume 12 Issue Pages 227-241  
  Keywords SYNTHIA; Virtual worlds; Autonomous Driving  
  Abstract Vision-based semantic segmentation in urban scenarios is a key functionality for autonomous driving. Recent revolutionary results of deep convolutional neural networks (DCNNs) foreshadow the advent of reliable classifiers to perform such visual tasks. However, DCNNs require learning of many parameters from raw images; thus, having a sufficient amount of diverse images with class annotations is needed. These annotations are obtained via cumbersome, human labour which is particularly challenging for semantic segmentation since pixel-level annotations are required. In this chapter, we propose to use a combination of a virtual world to automatically generate realistic synthetic images with pixel-level annotations, and domain adaptation to transfer the models learnt to correctly operate in real scenarios. We address the question of how useful synthetic data can be for semantic segmentation – in particular, when using a DCNN paradigm. In order to answer this question we have generated a synthetic collection of diverse urban images, named SYNTHIA, with automatically generated class annotations and object identifiers. We use SYNTHIA in combination with publicly available real-world urban images with manually provided annotations. Then, we conduct experiments with DCNNs that show that combining SYNTHIA with simple domain adaptation techniques in the training stage significantly improves performance on semantic segmentation.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor Gabriela Csurka  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.085; 600.082; 600.076; 600.118 Approved no  
  Call Number ADAS @ adas @ RSV2017 Serial 2882  
Permanent link to this record
 

 
Author (down) German Ros; Jesus Martinez del Rincon; Gines Garcia-Mateos edit   pdf
url  isbn
openurl 
  Title Articulated Particle Filter for Hand Tracking Type Conference Article
  Year 2012 Publication 21st International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 3581 - 3585  
  Keywords  
  Abstract This paper proposes a new version of Particle Filter, called Articulated Particle Filter – ArPF -, which has been specifically designed for an efficient sampling of hierarchical spaces, generated by articulated objects. Our approach decomposes the articulated motion into layers for efficiency purposes, making use of a careful modeling of the diffusion noise along with its propagation through the articulations. This produces an increase of accuracy and prevent for divergences. The algorithm is tested on hand tracking due to its complex hierarchical articulated nature. With this purpose, a new dataset generation tool for quantitative evaluation is also presented in this paper.  
  Address Tsukuba Science City, Japan  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-4651 ISBN 978-1-4673-2216-4 Medium  
  Area Expedition Conference ICPR  
  Notes ADAS Approved no  
  Call Number Admin @ si @ RMG2012 Serial 2031  
Permanent link to this record
 

 
Author (down) German Ros; J. Guerrero; Angel Sappa; Daniel Ponsa; Antonio Lopez edit   pdf
openurl 
  Title Fast and Robust l1-averaging-based Pose Estimation for Driving Scenarios Type Conference Article
  Year 2013 Publication 24th British Machine Vision Conference Abbreviated Journal  
  Volume Issue Pages  
  Keywords SLAM  
  Abstract Robust visual pose estimation is at the core of many computer vision applications, being fundamental for Visual SLAM and Visual Odometry problems. During the last decades, many approaches have been proposed to solve these problems, being RANSAC one of the most accepted and used. However, with the arrival of new challenges, such as large driving scenarios for autonomous vehicles, along with the improvements in the data gathering frameworks, new issues must be considered. One of these issues is the capability of a technique to deal with very large amounts of data while meeting the realtime
constraint. With this purpose in mind, we present a novel technique for the problem of robust camera-pose estimation that is more suitable for dealing with large amount of data, which additionally, helps improving the results. The method is based on a combination of a very fast coarse-evaluation function and a robust ℓ1-averaging procedure. Such scheme leads to high-quality results while taking considerably less time than RANSAC.
Experimental results on the challenging KITTI Vision Benchmark Suite are provided, showing the validity of the proposed approach.
 
  Address Bristol; UK; September 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference BMVC  
  Notes ADAS Approved no  
  Call Number Admin @ si @ RGS2013b; ADAS @ adas @ Serial 2274  
Permanent link to this record
 

 
Author (down) German Ros; J. Guerrero; Angel Sappa; Antonio Lopez edit   pdf
doi  isbn
openurl 
  Title VSLAM pose initialization via Lie groups and Lie algebras optimization Type Conference Article
  Year 2013 Publication Proceedings of IEEE International Conference on Robotics and Automation Abbreviated Journal  
  Volume Issue Pages 5740 - 5747  
  Keywords SLAM  
  Abstract We present a novel technique for estimating initial 3D poses in the context of localization and Visual SLAM problems. The presented approach can deal with noise, outliers and a large amount of input data and still performs in real time in a standard CPU. Our method produces solutions with an accuracy comparable to those produced by RANSAC but can be much faster when the percentage of outliers is high or for large amounts of input data. On the current work we propose to formulate the pose estimation as an optimization problem on Lie groups, considering their manifold structure as well as their associated Lie algebras. This allows us to perform a fast and simple optimization at the same time that conserve all the constraints imposed by the Lie group SE(3). Additionally, we present several key design concepts related with the cost function and its Jacobian; aspects that are critical for the good performance of the algorithm.  
  Address Karlsruhe; Germany; May 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1050-4729 ISBN 978-1-4673-5641-1 Medium  
  Area Expedition Conference ICRA  
  Notes ADAS; 600.054; 600.055; 600.057 Approved no  
  Call Number Admin @ si @ RGS2013a; ADAS @ adas @ Serial 2225  
Permanent link to this record
 

 
Author (down) German Ros; Angel Sappa; Daniel Ponsa; Antonio Lopez edit   pdf
openurl 
  Title Visual SLAM for Driverless Cars: A Brief Survey Type Conference Article
  Year 2012 Publication IEEE Workshop on Navigation, Perception, Accurate Positioning and Mapping for Intelligent Vehicles Abbreviated Journal  
  Volume Issue Pages  
  Keywords SLAM  
  Abstract  
  Address Alcalá de Henares  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IVW  
  Notes ADAS Approved no  
  Call Number Admin @ si @ RSP2012; ADAS @ adas Serial 2019  
Permanent link to this record
 

 
Author (down) German Ros edit  openurl
  Title Visual SLAM for Driverless Cars: An Initial Survey Type Report
  Year 2012 Publication CVC Technical Report Abbreviated Journal  
  Volume 170 Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis Master's thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ Ros2012c Serial 2414  
Permanent link to this record
 

 
Author (down) German Ros edit  isbn
openurl 
  Title Visual Scene Understanding for Autonomous Vehicles: Understanding Where and What Type Book Whole
  Year 2016 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Making Ground Autonomous Vehicles (GAVs) a reality as a service for the society is one of the major scientific and technological challenges of this century. The potential benefits of autonomous vehicles include reducing accidents, improving traffic congestion and better usage of road infrastructures, among others. These vehicles must operate in our cities, towns and highways, dealing with many different types of situations while respecting traffic rules and protecting human lives. GAVs are expected to deal with all types of scenarios and situations, coping with an uncertain and chaotic world.
Therefore, in order to fulfill these demanding requirements GAVs need to be endowed with the capability of understanding their surrounding at many different levels, by means of affordable sensors and artificial intelligence. This capacity to understand the surroundings and the current situation that the vehicle is involved in is called scene understanding. In this work we investigate novel techniques to bring scene understanding to autonomous vehicles by combining the use of cameras as the main source of information—due to their versatility and affordability—and algorithms based on computer vision and machine learning. We investigate different degrees of understanding of the scene, starting from basic geometric knowledge about where is the vehicle within the scene. A robust and efficient estimation of the vehicle location and pose with respect to a map is one of the most fundamental steps towards autonomous driving. We study this problem from the point of view of robustness and computational efficiency, proposing key insights to improve current solutions. Then we advance to higher levels of abstraction to discover what is in the scene, by recognizing and parsing all the elements present on a driving scene, such as roads, sidewalks, pedestrians, etc. We investigate this problem known as semantic segmentation, proposing new approaches to improve recognition accuracy and computational efficiency. We cover these points by focusing on key aspects such as: (i) how to leverage computation moving semantics to an offline process, (ii) how to train compact architectures based on deconvolutional networks to achieve their maximum potential, (iii) how to use virtual worlds in combination with domain adaptation to produce accurate models in a cost-effective fashion, and (iv) how to use transfer learning techniques to prepare models to new situations. We finally extend the previous level of knowledge enabling systems to reasoning about what has change in a scene with respect to a previous visit, which in return allows for efficient and cost-effective map updating.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Angel Sappa;Julio Guerrero;Antonio Lopez  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-945373-1-8 Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ Ros2016 Serial 2860  
Permanent link to this record
 

 
Author (down) German Barquero; Sergio Escalera; Cristina Palmero edit   pdf
url  openurl
  Title BeLFusion: Latent Diffusion for Behavior-Driven Human Motion Prediction Type Conference Article
  Year 2023 Publication IEEE/CVF International Conference on Computer Vision (ICCV) Workshops Abbreviated Journal  
  Volume Issue Pages 2317-2327  
  Keywords  
  Abstract Stochastic human motion prediction (HMP) has generally been tackled with generative adversarial networks and variational autoencoders. Most prior works aim at predicting highly diverse movements in terms of the skeleton joints’ dispersion. This has led to methods predicting fast and motion-divergent movements, which are often unrealistic and incoherent with past motion. Such methods also neglect contexts that need to anticipate diverse low-range behaviors, or actions, with subtle joint displacements. To address these issues, we present BeLFusion, a model that, for the first time, leverages latent diffusion models in HMP to sample from a latent space where behavior is disentangled from pose and motion. As a result, diversity is encouraged from a behavioral perspective. Thanks to our behavior
coupler’s ability to transfer sampled behavior to ongoing motion, BeLFusion’s predictions display a variety of behaviors that are significantly more realistic than the state of the art. To support it, we introduce two metrics, the Area of
the Cumulative Motion Distribution, and the Average Pairwise Distance Error, which are correlated to our definition of realism according to a qualitative study with 126 participants. Finally, we prove BeLFusion’s generalization power in a new cross-dataset scenario for stochastic HMP.
 
  Address 2-6 October 2023. Paris (France)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCV  
  Notes HUPBA; no menciona Approved no  
  Call Number Admin @ si @ BEP2023 Serial 3829  
Permanent link to this record
 

 
Author (down) German Barquero; Sergio Escalera; Cristina Palmero edit   pdf
url  openurl
  Title Seamless Human Motion Composition with Blended Positional Encodings Type Miscellaneous
  Year 2024 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Conditional human motion generation is an important topic with many applications in virtual reality, gaming, and robotics. While prior works have focused on generating motion guided by text, music, or scenes, these typically result in isolated motions confined to short durations. Instead, we address the generation of long, continuous sequences guided by a series of varying textual descriptions. In this context, we introduce FlowMDM, the first diffusion-based model that generates seamless Human Motion Compositions (HMC) without any postprocessing or redundant denoising steps. For this, we introduce the Blended Positional Encodings, a technique that leverages both absolute and relative positional encodings in the denoising chain. More specifically, global motion coherence is recovered at the absolute stage, whereas smooth and realistic transitions are built at the relative stage. As a result, we achieve state-of-the-art results in terms of accuracy, realism, and smoothness on the Babel and HumanML3D datasets. FlowMDM excels when trained with only a single description per motion sequence thanks to its Pose-Centric Cross-ATtention, which makes it robust against varying text descriptions at inference time. Finally, to address the limitations of existing HMC metrics, we propose two new metrics: the Peak Jerk and the Area Under the Jerk, to detect abrupt transitions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA Approved no  
  Call Number Admin @ si @ BEP2024 Serial 4022  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: