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Figure 1. Common approaches for stochastic human motion prediction use variational autoencoders to model a latent space. Then, the
latent code sampled from it is fed to a decoder conditioned on the observation to generate the prediction. In this scenario, out-of-distribution
samples or low KL regularizations lead to unrealistic generated sequences. For example, the first prediction for X1 shows an abrupt and
unrealistic transition from walking to bending down. Instead, our proposed method, BeLFusion, leverages latent diffusion models to sample
from a disentangled behavioral space. As a result, it is able to predict a wide range of future behaviors performed with high realism.

Abstract
Stochastic human motion prediction (HMP) has gener-

ally been tackled with generative adversarial networks and
variational autoencoders. Most prior works aim at pre-
dicting highly diverse movements in terms of the skeleton
joints’ dispersion. This has led to methods predicting fast
and motion-divergent movements, which are often unreal-
istic and incoherent with past motion. Such methods also
neglect contexts that need to anticipate diverse low-range
behaviors, or actions, with subtle joint displacements. To
address these issues, we present BeLFusion, a model that,
for the first time, leverages latent diffusion models in HMP
to sample from a latent space where behavior is disentan-
gled from pose and motion. As a result, diversity is encour-
aged from a behavioral perspective. Thanks to our behavior
coupler’s ability to transfer sampled behavior to ongoing
motion, BeLFusion’s predictions display a variety of behav-
iors that are significantly more realistic than the state of the
art. To support it, we introduce two metrics, the Area of
the Cumulative Motion Distribution, and the Average Pair-
wise Distance Error, which are correlated to our definition
of realism according to a qualitative study with 126 partici-
pants. Finally, we prove BeLFusion’s generalization power
in a new cross-dataset scenario for stochastic HMP.

1. Introduction

Humans excel at inattentively predicting others’ actions
and movements. This is key to effectively engaging in inter-
actions with other people, driving a car, or walking across a
crowd. Replicating this ability is imperative in many appli-
cations like assistive robots, virtual avatars, or autonomous
cars [2, 52]. Many prior works conceive Human Motion
Prediction (HMP) from a deterministic point of view, fore-
casting a single sequence of body poses, or motion, given
past poses, usually represented with skeleton joints [35].
However, humans are spontaneous and unpredictable crea-
tures by nature, and this deterministic interpretation does
not fit contexts where anticipating all possible outcomes is
crucial. Accordingly, recent works have attempted to pre-
dict the whole distribution of possible future motions (i.e., a
multimodal distribution) given a short observed motion se-
quence. We refer to this reformulation as stochastic HMP.

Most prior stochastic works focus on predicting a highly
diverse distribution of motions. Such diversity has been tra-
ditionally defined and evaluated in the coordinate space [15,
36,39,53,65]. This definition biases research toward models
that generate fast and motion-divergent motions (see Fig. 1).
Although there are scenarios where predicting low-speed
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diverse motion is important, this is discouraged by prior
techniques. For example, in assistive robotics, anticipat-
ing behaviors (i.e., actions) like whether the interlocutor is
about to shake your hand or scratch their head might be cru-
cial for preparing the robot’s actuators on time [4, 44]. In
a surveillance scenario, a foreseen noxious behavior might
not differ much from a well-meaning one when consid-
ering only the poses along the motion sequence. We ar-
gue that this behavioral perspective is paramount to build
next-generation stochastic HMP models. Moreover, results
from prior diversity-centric works often suffer from a trade-
off that has been persistently overlooked: predicted motion
looks unnatural when observed following the motion of the
immediate past. The strong diversity regularization tech-
niques employed often produce abrupt speed changes or di-
rection discontinuities. We argue that consistency with the
immediate past is a requirement for prediction plausibility.

To tackle these issues, we present BeLFusion1 (Fig. 1).
By building a latent space where behavior is disentan-
gled from poses and motion, diversity is detached from
the traditional coordinate-based perspective and promoted
from a behavioral viewpoint. The behavior coupler en-
sures the predicted behavior is decoded into a smooth
and realistic continuation of the ongoing motion. Thus,
our predicted motions look more realistic than alternatives,
which we assess through quantitative and qualitative anal-
yses. BeLFusion is the first approach that exploits condi-
tional latent diffusion models (LDM) [51,58] for stochastic
HMP, achieving state-of-the-art performance. Specifically,
BeLFusion combines the unique capabilities of LDMs to
model conditional distributions with the convenient induc-
tive biases recurrent neural networks (RNNs) have for HMP.

To summarize, our main contributions are: (1) We pro-
pose BeLFusion, a method that generates predictions that
are significantly more realistic and coherent with respect
to the near past than prior works, while achieving state-
of-the-art accuracy on Human 3.6M [26] and AMASS [37]
datasets. (2) BeLFusion promotes diversity in a behavioral
latent space. As a result, both low- (e.g., hand-waving,
smoking) and long-range motions (e.g., standing up, sitting
down) are equally encouraged. We show that this boosts the
capacity to adapt the predictions’ diversity to the determi-
nacy of the motion context. (3) We improve and extend the
usual evaluation pipeline for stochastic HMP. For the first
time in this task, a cross-dataset evaluation is conducted to
assess the robustness against domain shifts, where the su-
perior generalization capabilities of our method are clearly
depicted. This setup, built with AMASS [37] dataset, show-
cases a broad range of actions performed by more than 400
subjects. (4) We propose two new metrics that provide com-
plementary insights on the statistical similarities between a)

1Code and pretrained models are made publicly available in https:
//github.com/BarqueroGerman/BeLFusion.

the predicted and the dataset averaged absolute motion, and
b) the predicted and the intrinsic dataset diversity. We show
that they are fairly correlated to our definition of realism.

2. Related work

2.1. Human motion prediction

Deterministic scenario. Prior works on HMP define the
problem as regressing a single future sequence of skele-
ton joints matching the immediate past, or observed mo-
tion. This regression is usually modeled with autoregressive
RNNs [18,21,27,41,46] or Transformers [1,11,42]. Graph
Convolutional Networks are typically included as interme-
diate layers to model the dependencies among joints [14,
30, 31, 40]. Some methods leverage Temporal Convolu-
tional Networks [29, 43] or a simple Multi-Layer Percep-
tron [23] to predict fixed-size sequences, achieving high
performance. Recently, some works claimed the benefits
of modeling sequences in the frequency space [11, 38, 40].
However, none of these solutions can model multimodal
distributions of future motions.

Stochastic scenario. To fill this gap, other methods
that predict multiple futures for each observed sequence
were proposed. Most of them use a generative approach
to model the distribution of possible futures. Most popular
generative models for HMP are generative adversarial net-
works (GANs) [6, 28] and variational autoencoders (VAEs)
[12, 39, 60, 62]. These methods often include diversity-
promoting losses in order to predict a high variety of mo-
tions [39], or incorporate explicit techniques for diverse
sampling [15, 65]. This diversity is computed with the raw
coordinates of the predicted poses. We argue that, as a re-
sult, the race for diversity has promoted motions deriving
to extremely varied poses very early in the prediction. Most
of these predictions are neither realistic nor plausible within
the context of the observed motion. Moreover, prior works
neglect situations where a diversity of behaviors, which can
sometimes be subtle, is important. We address this by im-
plicitly enforcing such diversity in a behavioral latent space.

Semantic human motion prediction. Few works have
attempted to leverage semantically meaningful latent spaces
for stochastic HMP [19, 33, 62]. For example, [19] exploits
disentangled motion representations for each part of the
body to control the HMP. [62] proposes to add a sampled
latent code to the observed encoding to transform it into a
prediction encoding. This inductive bias helps the network
disentangle a motion code from the observed poses. How-
ever, the strong assumption that a simple arithmetic oper-
ation can map both sequences limits the expressiveness of
the model. Although not specifically focused on HMP, [10]
proposes an adversarial framework to disentangle a behav-
ioral encoding from a sequence of poses. The extracted be-
havior can then be transferred to any initial pose. In this
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Figure 2. BeLFusion’s architecture. A latent diffusion model conditioned on an encoding c of the observation, X, progressively denoises
a sample from a zero-mean unit variance multivariate normal distribution into a behavior code. Then, the behavior coupler Bφ decodes
the prediction by transferring the sampled behavior to the target motion, xm. In our implementation, fΦ is a conditional U-Net with
cross-attention, gα is a dense layer, and hλ, and Bφ are one-layer recurrent neural networks.

paper, we propose a generalization of such framework that
transfers behavior to ongoing movements. Our method ex-
ploits this disentanglement to promote behavioral diversity
in HMP.

2.2. Diffusion models

Denoising diffusion probabilistic models aim at learn-
ing to reverse a Markov chain of M diffusion steps (usually
M > 100) that slowly adds random noise to the target data
samples [25,54]. For conditional generation, the most com-
mon strategy consists in applying cross-attention to the con-
ditioning signal at each denoising timestep [16]. Diffusion
models have achieved impressive results in fields like video
generation, inpainting, or anomaly detection [63]. In a more
similar context, [49,57] use diffusion models for time series
forecasting and imputation. [20] recently presented a diffu-
sion model for trajectory prediction that controls the uncer-
tainty of the prediction by shortening the denoising chain.

All diffusion models come with an expensive trade-off:
immensely slow inference due to the large number of de-
noising steps required. Latent diffusion models (LDM)
accelerate the sampling by applying diffusion to a much
lower-resolution latent space learned by a VAE [51, 58].
Thanks to the Kullback–Leibler (KL) regularization, the
learned latent space is built close to a normal distribution.
As a result, the length of the Markov chain that diffuses
the latent codes can be greatly reduced, and reversed much
faster. In this work, we present the first approach that lever-
ages LDM for stochastic HMP, achieving state-of-the-art
performance in terms of accuracy and realism.

3. Methodology

In this section, we describe the methodology of
BeLFusion (see Fig. 2). First, we characterize the HMP
problem (Sec. 3.1). Then, we adapt the definitions of LDMs
to our scenario (Sec. 3.2). Finally, we describe the construc-
tion of our behavioral latent space and the derivation of the
training losses (Sec. 3.3).

3.1. Problem definition

The goal in HMP consists in, given an observed se-
quence of B poses (observation window), predicting the
following T poses (prediction window). In stochastic HMP,
N different prediction windows are predicted for each
observation window. Accordingly, we define the set of
poses in the observation and prediction windows as X =
{pt−B , ..., pt−2, pt−1} and Yi = {pit, pit+1, ..., p

i
t+T−1},

respectively, where i ∈ {1, . . . , N}2, and pit ∈ Rd are the
Cartesian coordinates of the human joints at time step t.

3.2. Motion latent diffusion

Now, we define a direct adaptation of LDM to HMP.
First, a VAE is trained so that an encoder E transforms
fixed-length target sequences of T poses, Y, into a low-
dimensional latent space V ⊂ Rv . Samples z ∈ V can
be drawn and mapped back to the coordinate space with a
decoder D. Then, an LDM conditioned on X is trained to
predict the corresponding latent vector z = E(Y) ∈ V 3.
The generative HMP problem is formulated as follows:

P (Y|X) = P (Y, z|X) = P (Y|z,X)P (z|X). (1)

The first equality holds because Y is a deterministic
mapping from the latent code z. Then, sampling from the
true conditional distribution P (Y|X) is equivalent to sam-
pling z from P (z|X) and decoding Y with D.

LDMs are typically trained to predict the perturbation
εt = fΦ(zt, t,X) of the diffused latent code zt at each
time step t, where X is the conditioning observation. Once
trained, the network fΦ can reverse the diffusion Markov
chain of length M and infer z from a random sample zM ∼
N (0, 1). Instead, we choose to use a more convenient pa-
rameterization so that z0 = fΦ(zt, t,X) [34,61]. With this,
an approximation of z is predicted in every denoising step
z0, and used to sample the input of the next denoising step

2A sampled prediction Yi is hereafter referred as Y for intelligibility.
3For simplicity, we make an abuse of notation by using E(Y) to refer

to the mean of the distribution E(z|Y).
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Figure 3. Framework for behavioral disentanglement. By adver-
sarially training the auxiliary generator, rω , against the behavior
coupler, Bφ, the behavior encoder, pθ , learns to generate a dis-
entangled latent space of behaviors, pθ(z|Ye). At inference, Bφ
decodes a sequence of poses that smoothly transitions from any
target motion xm to performing the behavior extracted from Y.

zt−1, by diffusing it t − 1 times. We use q(zt−1|z0) to re-
fer to this diffusion process. With this parameterization, the
LDM objective loss (or latent loss) becomes:

Llat(X,Y) =
T∑
t=1

E
q(zt|z0)

‖fΦ(zt, t,X)− E(Y)︸ ︷︷ ︸
z

‖1. (2)

Having an approximate prediction at any denoising step
allows us to 1) apply regularization in the coordinates space
(Sec. 3.3), and 2) stop the inference at any step and still have
a meaningful prediction (Sec. 4.3).

3.3. Behavioral latent diffusion

In HMP, small discontinuities between the last observed
pose and the first predicted pose can look unrealistic. Thus,
the LDM must be highly accurate in matching the coordi-
nates of the first predicted pose to the last observed pose.
An alternative consists in autoencoding the offsets between
poses in consecutive frames. Although this strategy mini-
mizes the risk of discontinuities in the first frame, motion
speed or direction discontinuities are still bothersome.

Our proposed architecture, Behavioral Latent difFusion,
or BeLFusion, solves both problems. It reduces the latent
space complexity by relegating the adaption of the motion
speed and direction to the decoder. It does so by learning a
representation of posture-independent human dynamics: a
behavioral representation. In this framework, the decoder
learns to transfer any behavior to an ongoing motion by
building a coherent and smooth transition. Here, we first de-
scribe how the behavioral latent space is learned, and then
detail the BeLFusion pipeline for behavior-driven HMP.

Behavioral Latent Space (BLS). The behavioral rep-
resentation learning is inspired by [10], which presents a
framework to disentangle behavior from motion. Once dis-
entangled, such behavior can be transferred to any static ini-
tial pose. We propose an extension of their work to a general
and challenging scenario: behavioral transference to ongo-
ing motions. The architecture proposed is shown in Fig. 3.

First, we define the last C observed poses as the target
motion, xm = {pt−C , ..., pt−2, pt−1} ⊂ X, and Ye =
xm ∪Y. xm informs us about the motion speed and direc-
tion of the last poses of X, which should be coherent with

Y. The goal is to disentangle the behavior from the motion
and poses in Y. To do so, we adversarially train two gen-
erators, the behavior coupler Bφ, and the auxiliary decoder
rω , such that a behavior encoder pθ learns to generate a dis-
entangled latent space of behaviors pθ(z|Ye). Both Bφ and
rω have access to such latent space, but Bφ is additionally
fed with an encoding of the target motion, gα(xm). During
adversarial training, rω aims at preventing pθ from encod-
ing pose and motion information by trying to reconstruct
poses of Ye directly from pθ(z|Ye). This training allows
Bφ to decode a sequence of poses that smoothly transitions
from xm to perform the behavior extracted from Ye. At
inference time, rω is discarded.

More concretely, the disentanglement is learned by al-
ternating two objectives at each training iteration. The first
objective, which optimizes the parameters ω of the auxiliary
generator, forces it to predict Ye given the latent code z:

max
ω
Laux = max

ω
Epθ(z|Ye)(log rω(Ye|z)). (3)

The second objective acts on the parameters of the target
motion encoder, α, the behavior encoder, θ, and the behav-
ior coupler, φ. It makes Bφ learn an accurate Ye recon-
struction through the construction of a normally distributed
intermediate latent space:

max
α,θ,φ

Lmain = max
α,θ,φ

Epθ(z|Ye)[logBφ(Ye|z, gα(xm))]

−DKL(pθ(z|Ye)||p(z)))− Laux. (4)

Note that the parameters ω are not optimized when train-
ing with Eq. 4, and α, θ, φ with Eq. 3. The prior p(z) is a
multi-variate N (0, I). The inclusion of −Laux in Eq. 4 pe-
nalizes any accurate reconstruction of Ye by the auxiliary
generator. Since Bφ has access to the target posture and mo-
tion provided by xm, the main decoder Bφ only needs pθ to
encode the behavioral dynamics. The erasing of any pos-
tural information from z is encouraged by the −Laux term
in Lmain. One could argue that a valid and simple solution
for pθ would consist in disentangling motion from postures.
However, motion dynamics can still be used to easily ex-
tract a good posture approximation. Further details and vi-
sual examples of behavioral transference to several motions
xm are included in the supp. material.

Behavior-driven HMP. BeLFusion’s goal is to sample
the appropriate behavior code given the observation X, see
Fig. 2. To that end, an LDM conditioned on c = hλ(X) is
trained to optimize Llat(X,Ye) (Eq. 2), with E = pθ, so
that it learns to predict the behavioral encoding of Ye: the
expected value of pθ(z|Ye). Then, the behavior coupler,
Bφ, transfers the predicted behavior to the target motion,
xm, to reconstruct the poses of the prediction. However,
the reconstruction of Bφ is also conditioned on xm. Such
dependency cannot be modeled by the Llat objective alone.
Thanks to our parameterization (Sec. 3.2), we can also use
the traditional MSE loss in the reconstruction space:
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Lrec(X,Ye) =

T∑
t=1

E
q(zt|z0)

‖Bφ(fΦ(zt, t,X), gα(xm))

− Bφ(E(Ye), gα(xm))‖2. (5)

The second term of Eq. 5 leverages the autoencoded
Ye. We optimize the objective within the solutions space
bounded at the top by the autoencoder capabilities to help
stabilize the training. Note that only the future poses Y ⊂
Ye form the prediction. The encoder hλ is pretrained in an
autoencoder framework that reconstructs X. We found ex-
perimentally that hλ does not benefit from further training,
so its parameters λ are frozen during BeLFusion’s training.
The target motion encoder, gα, and the behavior coupler,
Bφ, are also pretrained as described before and kept frozen.
fΦ is conditioned on c with cross-attention.

Implicit diversity loss. Although training BeLFusion
with Eqs. 2 and 5 leads to accurate predictions, their di-
versity is poor. We argue that this is caused by the strong
regularization of both losses. We propose to relax them by
sampling k predictions at each training iteration and only
backpropagating the gradients through the two predictions
that each minimize the latent or the reconstructed loss:

min
k
Llat(X,Yk

e ) + λ min
k
Lrec(X,Yk

e ), (6)

where λ controls the trade-off between the latent and
the reconstruction errors. Regularization relaxation usually
leads to out-of-distribution predictions. This is often solved
by employing additional complex techniques like pose pri-
ors, or bone-length losses that regularize the other predic-
tions [9, 39]. BeLFusion can dispense with it due to mainly
two reasons: 1) Denoising diffusion models are capable of
faithfully capturing a greater breadth of the training distri-
bution than GANs or VAEs [16]; 2) The variational training
of the behavior coupler makes it more robust to errors in the
predicted behavior code.

4. Experimental evaluation
Our experimental evaluation is tailored toward two ob-

jectives. First, we aim at proving BeLFusion’s generaliza-
tion capabilities for both seen and unseen scenarios. For
the latter, we propose a challenging cross-dataset evalua-
tion setup. Second, we want to demonstrate the superiority
of our model with regard to the realism of its predictions
compared to state-of-the-art approaches. In this sense, we
propose two metrics and perform a qualitative study.

4.1. Evaluation setup

Datasets. We evaluate our proposed methodology on
Human3.6M [26] (H36M), and AMASS [37]. H36M con-
sists of clips where 11 subjects perform 15 actions, total-
ing 3.6M frames recorded at 50 Hz, with action class labels
available. We use the splits proposed by [65] and adopted

by most subsequent works [15, 36, 39, 53] (16 joints). Ac-
cordingly, 0.5s (25 frames) are used to predict the following
2s (100 frames). AMASS is a large-scale dataset that, as
of today, unifies 24 extremely varied datasets with a com-
mon joints configuration, with a total of 9M frames when
downsampled to 60Hz. Whereas latest deterministic HMP
approaches already include a within-dataset AMASS con-
figuration in their evaluation protocol [1,38,43], the dataset
remains unexplored in the stochastic context yet. To deter-
mine whether state-of-the-art methods can generalize their
learned motion predictive capabilities to other contexts (i.e.,
other datasets), we propose a new cross-dataset evaluation
protocol with AMASS. The training, validation, and test
sets include 11, 4, and 7 datasets, and 406, 33, and 54 sub-
jects (21 joints), respectively. We set the observation and
prediction windows to 0.5s and 2s (30 and 120 frames af-
ter downsampling), respectively. AMASS does not provide
action class labels. See the supp. material for more details.

Baselines. We include the zero-velocity baseline, which
has been proven very competitive in HMP [5, 41], and a
version of our model that replaces the LDM with a GAN,
BeGAN. We train three versions with k = 1, 5, 50. We
also compare against state-of-the-art methods for stochastic
HMP (referenced in Tab. 1). For H36M, we took all eval-
uation values from their respective works. For AMASS,
we retrained state-of-the-art methods with publicly avail-
able code that showed competitive performance for H36M.

Implementation details. We trained BeLFusion with
M = 10, k = 50, a U-Net with cross-attention [16] as
fΦ, and one-layer RNNs as hλ, gα, and Bφ. For H36M,
λ = 5, and for AMASS, λ = 1. The model used for in-
ference was an exponential moving average of the trained
model with a decay of 0.999. Sampling was conducted with
a DDIM sampler [55]. As explained in Sec. 3.2, our im-
plementation of LDM can be early-stopped at any step of
the chain of length M and still have access to an approx-
imation of the behavioral latent code. Thus, we also in-
clude BeLFusion’s results when inference is early-stopped
right after the first denoising diffusion step (i.e., x10 faster):
BeLFusion D. Further implementation details are included
in the supp. material.

4.2. Evaluation metrics

To compare BeLFusion with prior works, we follow the
well-established evaluation pipeline proposed in [65]. The
Average and the Final Displacement Error metrics (ADE,
and FDE, respectively) quantify the error on the most simi-
lar prediction compared to the ground truth. While the ADE
averages the error along all timesteps, the FDE only does it
for the last predicted frame. Their multimodal versions for
stochastic HMP, MMADE and MMFDE, compare all pre-
dicted futures with the multimodal ground truth of the ob-
servation. To obtain the latter, each observation window X
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Human3.6M [26] AMASS [37]

APD APDE ADE FDE MMADE MMFDE CMD FID* APD APDE ADE FDE MMADE MMFDE CMD

Zero-Velocity 0.000 8.079 0.597 0.884 0.683 0.909 22.812 0.606 0.000 9.292 0.755 0.992 0.814 1.015 39.262
BeGAN k=1 0.675 7.411 0.494 0.729 0.605 0.769 12.082 0.542 0.717 8.595 0.643 0.834 0.688 0.843 24.483
BeGAN k=5 2.759 5.335 0.495 0.697 0.584 0.718 13.973 0.578 5.643 4.043 0.631 0.788 0.667 0.787 24.034
BeGAN k=50 6.230 2.200 0.470 0.637 0.561 0.661 8.406 0.569 7.234 2.548 0.613 0.717 0.650 0.720 22.625

HP-GAN [6] 7.214 - 0.858 0.867 0.847 0.858 - - - - - - - - -
DSF [64] 9.330 - 0.493 0.592 0.550 0.599 - - - - - - - - -
DeLiGAN [24] 6.509 - 0.483 0.534 0.520 0.545 - - - - - - - - -
GMVAE [17] 6.769 - 0.461 0.555 0.524 0.566 - - - - - - - - -
TPK [60] 6.723 1.906 0.461 0.560 0.522 0.569 6.326 0.538 9.283 2.265 0.656 0.675 0.658 0.674 17.127
MT-VAE [62] 0.403 - 0.457 0.595 0.716 0.883 - - - - - - - - -
BoM [8] 6.265 - 0.448 0.533 0.514 0.544 - - - - - - - - -
DLow [65] 11.741 3.781 0.425 0.518 0.495 0.531 4.927 1.255 13.170 4.243 0.590 0.612 0.618 0.617 15.185
MultiObj [36] 14.240 - 0.414 0.516 - - - - - - - - - - -
GSPS [39] 14.757 6.749 0.389 0.496 0.476 0.525 10.758 2.103 12.465 4.678 0.563 0.613 0.609 0.633 18.404
Motron [53] 7.168 2.583 0.375 0.488 0.509 0.539 40.796 13.743 - - - - - - -
DivSamp [15] 15.310 7.479 0.370 0.485 0.475 0.516 11.692 2.083 24.724 15.837 0.564 0.647 0.623 0.667 50.239

BeLFusion D 5.777 2.571 0.367 0.472 0.469 0.506 8.508 0.255 7.458 2.663 0.508 0.567 0.564 0.591 19.497
BeLFusion 7.602 1.662 0.372 0.474 0.473 0.507 5.988 0.209 9.376 1.977 0.513 0.560 0.569 0.585 16.995

Table 1. Comparison of BeLFusion D (single denoising step) and BeLFusion (all denoising steps) with state-of-the-art methods for
stochastic human motion prediction on Human3.6M and AMASS datasets. Bold and underlined results correspond to the best and second-
best results, respectively. Lower is better for all metrics except APD. *Only showed for Human3.6M due to lack of class labels for
AMASS.

is grouped with other observations Xi with a similar last
observed pose in terms of L2 distance. The corresponding
prediction windows Yi form the multimodal ground truth
of X. The Average Pairwise Distance (APD) quantifies the
diversity by computing the L2 distance among all pairs of
predicted poses at each timestep. Following [9, 15, 22, 48],
we also include the Fréchet Inception Distance (FID), which
leverages the output of the last layer of a pretrained action
classifier to quantify the similarity between the distributions
of predicted and ground truth motions.

Area of the Cumulative Motion Distribution (CMD).
The plausibility and realism of human motion are difficult
to assess quantitatively. However, some metrics can pro-
vide an intuition of when a set of predicted motions are not
plausible. For example, consistently predicting high-speed
movements given a context where the person was stand-
ing still might be plausible but does not represent a statis-
tically coherent distribution of possible futures. We argue
that prior works have persistently ignored this. We propose
a simple complementary metric: the area under the cumu-
lative motion distribution. First, we compute the average
of the L2 distance between the joint coordinates in two con-
secutive frames (displacement) across the whole test set, M̄ .
Then, for each frame t of all predicted motions, we compute
the average displacement Mt. Then:

CMD =

T−1∑
i=1

i∑
t=1

‖Mt − M̄‖1 =

T−1∑
t=1

(T − t)‖Mt − M̄‖1. (7)

The distribution accumulation is motivated by the fact
that early motion irregularities in the predictions impact the
quality of the remaining sequence. Intuitively, this metric
gives an idea of how the predicted average displacement
per frame deviates from the expected one. However, the ex-
pected average displacement could arguably differ among

actions and datasets. To account for this, we compute the
total CMD as the weighted average of the CMD for each
H36M action, or each AMASS test dataset, weighted by the
action or dataset relative frequency.

Average Pairwise Distance Error (APDE). There are
many elements that condition the distribution of future
movements and, therefore, the appropriate motion diversity
levels. To analyze to which extent the diversity is prop-
erly modeled, we introduce the average pairwise distance
error. We define it as the absolute error between the APD of
the multimodal ground truth and the APD of the predicted
samples. Samples without any multimodal ground truth are
dismissed. See supp. material for additional details.

4.3. Results

Comparison with the state of the art. As shown in
Tab. 1, BeLFusion achieves state-of-the-art performance in
all accuracy metrics for both datasets. The improvements
are especially important in the cross-dataset AMASS con-
figuration, proving its superior robustness against domain
shifts. We hypothesize that such good generalization capa-
bilities are due to 1) the exhaustive coverage of behaviors
modeled in the disentangled latent space, and 2) the poten-
tial of LDMs to model the conditional distribution of future
behaviors. In fact, after a single denoising step, our model
already achieves the best accuracy results (BeLFusion D).
Our method also excels at realism-related metrics like CMD
and FID, which benefit from going through all denoising
steps. By contrast, Fig. 5 shows that predictions from GSPS
and DivSamp consistently accelerate at the beginning, pre-
sumably toward divergent poses that promote high diver-
sity values. As a result, they yield high CMD values, espe-
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Figure 4. Qualitative results show the adaption of BeLFusion’s diversity to the observation context in both within- (H36M, top) and
cross-dataset (AMASS, bottom). At each future timestep, 10 predicted samples are superimposed below the thicker ground truth.
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Figure 5. Left. Average predicted motion of state-of-the-art meth-
ods in H36M. Right. Cumulative distribution function (CDF) of
the weighted absolute errors in the left with respect to the ground
truth. CMD is the area under this curve.

cially for H36M. The predictions from methods that lever-
age transformations in the frequency space freeze at the
very long-term horizon. The high CMD value of Motron de-
picts an important jitter in its predictions. BeLFusion shows
low APDE, highlighting its good ability to adjust to the ob-
served context. This is achieved thanks to 1) the pretrained
encoding of the whole observation window, and 2) the be-
havior coupling to the target motion. In contrast, higher
APDE values of GSPS and DivSamp are caused by their
tendency toward predicting movements more diverse than
those present in the dataset. Action- (H36M) and dataset-
wise (AMASS) results are included in supp. material.

Fig. 4 shows the evolution of 10 superimposed predic-
tions along time in three actions from H36M (sitting down,
eating, and giving directions), and three datasets from
AMASS (DanceDB4, HUMAN4D [13], and GRAB [56]).
It confirms visually what the CMD and APDE metrics al-

4Dance Motion Capture DB, http://dancedb.cs.ucy.ac.cy.

ready suggested. First, the acceleration of GSPS and Di-
vSamp at the beginning of the prediction leads to extreme
poses very fast, abruptly transitioning from the observed
motion. Second, it shows the capacity of BeLFusion to
adapt the diversity predicted to the context. For example,
the diversity of motion predicted while eating focuses on
the arms, and does not include holistic extreme poses. In-
terestingly, when just sitting, the predictions include a wider
range of full-body movements like laying down, or bending
over. A similar context fitting is observed in the AMASS
cross-dataset scenario. For instance, BeLFusion correctly
identifies that the diversity must target the upper body in
the GRAB dataset, or the arms while doing a dance step.

Ablation study. Here, we analyze the effect of each of
our contributions in the final model quantitatively. This in-
cludes the contributions of Llat and Lrec, and the benefits
of disentangling behavior from motion in the latent space
construction. Results are summarized in Tab. 2. Although
training is stable and losses decrease similarly in all cases,
solely considering the loss at the coordinate space (Lrec)
leads to poor generalization capabilities. This is especially
noticeable in the cross-dataset scenario, where models with
both latent space constructions are the least accurate among
all loss configurations. We observe that the latent loss (Llat)
boosts the metrics in both datasets, and can be further en-
hanced when considered along with the reconstruction loss.
Overall, the BLS construction benefits all loss configura-
tions in terms of accuracy on both datasets, proving it a very
promising strategy to be further explored in HMP.

Implicit diversity. As explained in Sec. 3.3, the param-
eter k regulates the relaxation of the training loss (Eq. 6) on
BeLFusion. Fig. 6 shows how metrics behave when 1) tun-
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Figure 6. Evolution of evaluation metrics (y-axis) along denoising steps (x-axis) at inference time, for different values of k. Early stopping
can be applied at any time, between the first (•) and the last step (?). Accuracy saturates at k = 50, with gains for all metrics when
increasing k, especially for diversity (APD). Qualitative metrics (CMD, FID) decrease after each denoising step across all k values.

Human3.6M [26] AMASS [37]

BLS Llat Lrec APD APDE ADE FDE CMD FID APD APDE ADE FDE CMD

X 7.622 1.276 0.510 0.795 5.110 2.530 10.788 3.032 0.697 0.881 16.628
X X 6.169 2.240 0.386 0.505 8.432 0.475 9.555 2.216 0.593 0.685 17.036

X 7.475 1.773 0.388 0.490 4.643 0.177 8.688 2.079 0.528 0.572 18.429
X X 6.760 1.974 0.377 0.485 6.615 0.233 8.885 2.009 0.516 0.565 17.576

X X 7.301 2.012 0.380 0.484 4.870 0.195 8.832 2.034 0.519 0.568 17.618
X X X 7.602 1.662 0.372 0.474 5.988 0.209 9.376 1.977 0.513 0.560 16.995

Table 2. Results from the ablation analysis of BeLFusion. We assess the contribution of the latent (Llat) and reconstruction (Lrec) losses,
as well as the benefits of applying latent diffusion to a disentangled behavioral latent space (BLS).

Human3.6M [26] AMASS [37]

Avg. rank Ranked 1st Avg. rank Ranked 1st

GSPS 2.246 ± 0.358 17.9% 2.003 ± 0.505 30.5%
DivSamp 2.339 ± 0.393 13.4% 2.432 ± 0.408 14.0%
BeLFusion 1.415 ± 0.217 68.7% 1.565 ± 0.332 55.5%

Table 3. Qualitative study. 126 participants ranked sets of samples
from GSPS, DivSamp, and BeLFusion by their realism. Lower
average rank (± std. dev.) is better.

ing k, and 2) moving forward in the reverse diffusion chain
(i.e., progressively applying denoising steps). In general,
increasing k enhances the samples’ diversity, accuracy, and
realism. For k ≤ 5, going through the whole chain of de-
noising steps boosts accuracy. However, for k > 5, further
denoising only boosts diversity- and realism-wise metrics
(APD, CMD, FID), and makes the fast single-step inference
extremely accurate. With large enough k values, the LDM
learns to cover the conditional space of future behaviors to
a great extent and can therefore make a fast and reliable
first prediction. The successive denoising steps stochasti-
cally refine such approximations at expenses of larger infer-
ence time. Thus, each denoising step 1) promotes diversity
within the latent space, and 2) brings the predicted latent
code closer to the true behavioral distribution. Both effects
can be observed in the latent APD and FID plots in Fig. 6.
The latent APD is the equivalence of the APD in the latent
space of predictions and is computed likewise. Note that
these effects are not favored by neither the loss choice nor
the BLS (see supp. material). Concurrent research has ob-
served a similar effect on image generation [3].

Qualitative assessment. We performed a qualitative
study to assess the realism of BeLFusion’s predictions com-

pared to those of the most accurate methods: DivSamp and
GSPS. For each method, we sampled six predictions for 24
randomly sampled observation segments from each dataset
(48 in total). We then generated a gif that showed both the
observed and predicted sequences of the six predictions at
the same time. Each participant was asked to order the three
sets according to the average realism of the samples. Four
questions from either H36M or AMASS were asked to each
participant (more details in supp. material). A total of 126
people participated in the study. The statistical significance
of the results was assessed with the Friedman and Nemenyi
tests. Results are shown in Tab. 3. BeLFusion’s predictions
are significantly more realistic than both competitors’ in
both datasets (p<0.01). GSPS could only be proved signif-
icantly more realistic than DivSamp for AMASS (p<0.01).
Interestingly, the participant-wise average realism ranks of
each method are highly correlated to each method’s CMD
(r=0.730, and r=0.601) and APDE (r=0.732, and r=0.612),
for both datasets (H36M, and AMASS, respectively), in
terms of Pearson’s correlation (p<0.001).

5. Conclusion
We presented BeLFusion, a latent diffusion model that

exploits a behavioral latent space to make more realistic,
accurate, and context-adaptive human motion predictions.
BeLFusion takes a major step forward in the cross-dataset
AMASS configuration. This suggests the necessity of fu-
ture work to pay attention to domain shifts. These are
present in any on-the-wild scenario and therefore on our
way toward making highly capable predictive systems.

Limitations and future work. Although sampling with
BeLFusion only takes 10 denoising steps, this is still slower
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than sampling from GANs or VAEs. This might limit its
applicability to a real-life scenario. Future work includes
exploring our method’s capabilities for exploiting a longer
observation time-span, and for being auto-regressively ap-
plied to predict longer-term sequences.
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Supplementary Material

In this supplementary material, we first include addi-
tional implementation details to those provided in Sec. 4.1
needed to reproduce our work (Sec. A). Then, we comple-
ment Sec. 4.1 by providing all the information needed to
follow the proposed cross-dataset AMASS evaluation pro-
tocol (Sec. B). Sec. 3.3 is also extended with a 2D visualiza-
tion of the disentangled behavioral latent space, and several
video examples of behavioral transference (Sec. C). Class-
and dataset-wise results from Sec. 4.3 are included and dis-
cussed (Sec. D), as well as a detailed discussion on several
video examples comparing BeLFusion against the state of
the art (Sec. E). Finally, we provide a thorough description
and extended results of the qualitative assessment presented
at the end of Sec. 4.3 (Sec. F).

A. Implementation details

To ensure reproducibility, we include in this section all
the details regarding BeLFusion’s architecture and training
procedure (Sec. A.1). We also cover the details on the im-
plementation of the state-of-the-art models retrained with
AMASS (Sec. A.2). We follow the terminology used in Fig.
2 and 3 from the main paper.

Note that we only report the hyperparameter values of
the best models. For their selection, we conducted grid
searches that included learning rate, losses weights, and
most relevant network parameters. Data augmentation for
all models consisted in randomly rotating from 0 to 360 de-
grees around the Z axis and mirroring the body skeleton
with respect to the XZ- and YZ-planes. The axis and mir-
roring planes were selected to preserve the floor position
and orientation. All models were trained with the ADAM
optimizer with AMSGrad [50], with PyTorch 1.9.1 [45] and
CUDA 11.1 on a single NVIDIA GeForce RTX 3090. The
whole BeLFusion training pipleine was trained in 12h for
H36M, and 24h for AMASS.

A.1. BeLFusion

Behavioral latent space. The behavioral VAE consists
of four modules. The behavior encoder pθ, which receives
the flattened coordinates of all the joints, is composed of a
single Gated Recurrent Unit (GRU) cell (hidden state of size
128) followed by a set of a 2D convolutional layer (kernel
size of 1, stride of 1, padding of 0) with L2 weight normal-
ization and learned scaling parameters that maps the GRU
state to the mean of the latent distribution, and another set
to its variance. The behavior coupler Bφ consists of a GRU
(input shape of 256, hidden state of size 128) followed by a
linear layer that maps, at each timestep, its hidden state to
the offsets of each joint coordinates with respect to their last
observed position. The context encoder gα is an MLP (hid-

den state of 128) that is fed with the flattened joints coor-
dinates of the target motion xm, that includes C=3 frames.
Finally, the auxiliary decoder rω is a clone of Bφ with a nar-
rower input shape (128), as only the latent code is fed. For
H36M, the behavioral VAE was trained with learning rates
of 0.005, and 0.0005 for Lmain and Laux, respectively. For
AMASS, they were set to 0.001 and 0.005. They were all
decayed with a ratio of 0.9 every 50 epochs. The batch size
was set to 64. Each epoch consisted of 5000 and 10000 it-
erations for H36M and AMASS, respectively. The weight
of the −Laux term in Lmain was set to 1.05 for H36M and
to 1.00 for AMASS. The KL term was assigned a weight of
0.0001 in both datasets. Once trained, the behavioral VAE
was further fine-tuned for 500 epochs with the behavior en-
coder pθ frozen, to enhance the reconstruction capabilities
without modifying the disentangled behavioral latent space.
Note that for the ablation study, the non-behavioral latent
space was built likewise by disabling the adversarial train-
ing framework, and optimizing the model only with the log-
likelihood and KL terms of Lmain (main paper, Eq. 4), as
in a traditional VAE framework.

Observation encoding. The observation encoder hλ
was pretrained as an autoencoder with an L2 reconstruc-
tion loss. It consists of a single-cell GRU layer (hidden
state of 64) fed with the flattened joints coordinates. The
hidden state of the GRU layer is fed to three MLP layers
(output sizes of 300, 200, and 64), and then set as the hid-
den state of the GRU decoder unit (hidden state of size 64).
The sequence is reconstructed by predicting the offsets with
respect to the last observed joint coordinates.

Latent diffusion model. BeLFusion’s LDM borrowed
its U-Net from [16]. To leverage it, the target latent codes
were reshaped to a rectangular shape (16x8), as prior work
proposed [7]. In particular, our U-Net has 2 attention lay-
ers (resolutions of 8 and 4), 16 channels per attention head,
a FiLM-like conditioning mechanism [47], residual blocks
for up and downsampling, and a single residual block. Both
the observation and target behavioral encodings were nor-
malized between -1 and 1. The LDM was trained with the
sqrt noise schedule (s = 0.0001) proposed in [32], which
also provided important improvements in our scenario com-
pared to the classic linear or cosine schedules (see Fig. 7).
With this schedule, the diffusion process is started with a
higher noise level, which increases rapidly in the middle
of the chain. The length of the Markov diffusion chain
was set to 10, the batch size to 64, the learning rate to
0.0005, and the learning rate decay to a rate of 0.9 every
100 epochs. Each epoch included 10000 samples in both
H36M and AMASS training scenarios. Early stopping with
a patience of 100 epochs was applied to both, and the epoch
where it was triggered was used for the final training with
both validation and training sets together. Thus, BeLFusion
was trained for 217 epochs in H36M and 1262 for AMASS.
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Figure 7. Diffusion schedules. Schedules explored for diffusing
the target latent codes.

For both datasets, the LDM was trained with an exponential
moving average (EMA) with a decay of 0.999, triggered
every 10 batch iterations, and starting after 1000 initial it-
erations. The EMA helped reduce the overfitting in the last
denoising steps. Predictions were inferred with DDIM sam-
pling [55].

A.2. State-of-the-art models

The publicly available codes from TPK, DLow, GSPS,
and DivSamp were adapted to be trained and evaluated un-
der the AMASS cross-dataset protocol. The best values for
their most important hyperparameters were found with grid
search. The number of iterations per epoch for all of them
was set to 10000.

TPK’s loss weights were set to 1000 and 0.1 for the tran-
sition and KL losses, respectively. The learning rate was
set to 0.001. DLow was trained on top of the TPK model
with a learning rate of 0.0001. Its reconstruction and diver-
sity losses weights were set to 2 and 25. For GSPS, the
upper- and lower-body joint indices were adapted to the
AMASS skeleton configuration. The multimodal ground
truth was generated with an upper L2 distance of 0.1, and a
lower APD threshold of 0.3. The body angle limits were re-
computed with the AMASS statistics. The GSPS learning
rate was set to 0.0005, and the weights of the upper- and
lower-body diversity losses were set to 5 and 10, respec-
tively. For DivSamp, we used the multimodal ground truth
from GSPS, as for H36M they originally borrowed such in-
formation from GSPS. For the first training stage (VAE),
the learning rate was set to 0.001, and the KL weight to 1.
For the second training stage (sampling model), the learn-
ing rate was set to 0.0001, the reconstruction loss weight
was set to 40, and the diversity loss weight to 20. For all of
them, unspecified parameters were set to the values reported
in their original H36M implementations.
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Figure 8. Test set sequences. We show the number of test se-
quences evaluated for each class/dataset in H36M/AMASS.

B. AMASS cross-dataset protocol

In this section, we give more details to ensure the repro-
ducibility of the cross-dataset AMASS evaluation protocol.

Training splits. The training, validation, and test splits
are based on the official AMASS splits from the original
publication [37]. However, we also include the new datasets
added afterward, up to date. Accordingly, the training set
contains the ACCAD, BMLhandball, BMLmovi, BMLrub,
CMU, EKUT, EyesJapanDataset, KIT, PosePrior, TCD-
Hands, and TotalCapture datasets, and the validation set
contains the HumanEva, HDM05, SFU, and MoSh datasets.
The remaining datasets are all part of the test set: DFaust,
DanceDB, GRAB, HUMAN4D, SOMA, SSM, and Transi-
tions. AMASS datasets showcase a wide range of behav-
iors at both intra- and inter-dataset levels. For example,
DanceDB, GRAB, and BMLhandball contain sequences of
dancing, grabbing objects, and sport actions, respectively.
Other datasets like HUMAN4D offer a wide intra-dataset
variability of behaviors by themselves. As a result, this eval-
uation protocol represents a very complete and challenge
benchmark for HMP.

Test sequences. For each dataset clip (previously down-
sampled to 60Hz), we selected all sequences starting from
frame 180 (3s), with a stride of 120 (2s). This was done
to ensure that for any segment to predict (prediction win-
dow), up to 3s of preceding motion was available. As a
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Figure 9. Behavioral latent space. 2D projection of the behav-
ioral encodings of all H36M test sequences generated with t-SNE.

result, future work will be able to explore models exploit-
ing longer observation windows while still using the same
prediction windows and, therefore, be compared to our re-
sults. A total of 12728 segments were selected, around 2.5
times the amount of H36M test sequences. Note that those
clips with no framerate available in AMASS metadata were
ignored. Fig. 8 shows the number of segments extracted
from each test dataset. 94.1% of all test samples belong to
either DanceDB, GRAB, or HUMAN4D. Most SSM clips
had to be discarded due to lengths shorter than 300 frames
(5s). The list of sequence indices is made available along
the project code for easing reproducibility.

Multimodal ground truth. The L2 distance threshold
used for the generation of the multimodal ground truth was
set to 0.4 so that the average number of resulting multi-
modal ground truths for each sequence was similar to that
of H36M with a threshold of 0.5 [65].

C. Behavioral latent space
In this section, we present 1) a t-SNE plot for visualiz-

ing the behavioral latent space of the H36M test segments,
and 2) visual examples of transferring behavior to ongoing
motions.

2D projection. Fig. 9 shows a 2-dimensional t-SNE pro-
jection of all behavioral encodings of the H36M test se-
quences [59]. Note that, despite its class label, a sequence
may show actions of another class. For example, Waiting
sequences include sub-sequences where the person walks or

sits down. Interestingly, we can observe that most walking-
related sequences (WalkDog, WalkTogether, Walking) are
clustered together in the top-right and bottom-left corners.
Such entanglement within those clusters suggests that the
task of choosing the way to keep walking might be rele-
gated to the behavior coupler, which has information on
how the action is being performed. Farther in those cor-
ners, we can also find very isolated clusters of Phoning and
Smoking, whose proximity to the walking behaviors sug-
gests that such sequences may involve a subject making
a call or smoking while walking. However, without fine-
grained annotations at the sequence level, we cannot come
to any strong conclusion.

Transference of behaviors. We include several videos5

showing the capabilities of the behavior coupler to transfer
a behavioral latent code to any ongoing motion. The motion
tagged as behavior shows the target behavior to be encoded
and transferred. All the other columns show the ongoing
motions where the behavior will be transferred to. They are
shown with blue and orange skeletons. Once the behavior
is transferred, the color of the skeletons switches to green
and pink. In ‘H1’ (H36M), the walking action or behavior
is transferred to the target ongoing motions. For ongoing
motions where the person is standing, they start walking to-
wards the direction they are facing (#1, #2, #4, #5). Such
transition is smooth and coherent with the observation. For
example, the person making a phone call in #7 keeps the
arm next to the ear while starting to walk. When sitting or
bending down, the movement of the legs is either very lit-
tle (#3 and #6), or very limited (#8). ‘H2’ and ‘H3’ show
the transference of subtle and long-range behaviors, respec-
tively. For AMASS, such behavioral encoding faces a huge
domain drift. However, we still observe good results at this
task. For example, ‘A1’ shows how a stretching movement
is successfully transferred to very distinct ongoing motions
by generating smooth and realistic transitions. Similarly,
‘A2’ and ‘A3’ are examples of transferring subtle and ag-
gressive behaviors, respectively. Even though the dancing
behavior in ‘A3’ was not seen at training time, it is trans-
ferred and adapted to the ongoing motion fairly realistically.

D. Further experimental results

In this section, we present a class- and dataset-wise com-
parison to the state of the art for H36M and AMASS, re-
spectively (Sec. D.1). We also include the distributions
of predicted displacement for each class/dataset, which are
used for the CMD calculation. Finally, we present an ex-
tended analysis of the effect of k, which controls the loss
relaxation level (Sec. D.2).

5Videos referenced in the supp. material are available in https://
barquerogerman.github.io/BeLFusion/.
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Classes APD APDE ADE FDE MMADE MMFDE CMD

Directions

TPK 6.510 2.039 0.447 0.482 0.523 0.544 4.687
DLow 11.874 3.359 0.415 0.465 0.499 0.514 3.471
GSPS 15.398 6.877 0.407 0.477 0.492 0.522 11.312
DivSamp 15.663 7.142 0.389 0.463 0.502 0.523 11.557
BeLFusion 7.090 1.709 0.378 0.422 0.484 0.494 7.364

Discussion

TPK 6.966 2.572 0.511 0.581 0.570 0.600 6.795
DLow 11.872 2.659 0.472 0.536 0.533 0.549 2.708
GSPS 14.199 4.992 0.448 0.541 0.526 0.563 8.641
DivSamp 15.310 5.905 0.432 0.526 0.534 0.557 9.410
BeLFusion 9.172 1.425 0.420 0.507 0.512 0.530 6.789

Eating

TPK 6.412 1.066 0.388 0.473 0.452 0.472 5.451
DLow 11.603 4.829 0.358 0.433 0.439 0.452 3.278
GSPS 15.570 8.793 0.334 0.419 0.424 0.448 12.099
DivSamp 15.681 8.904 0.321 0.419 0.428 0.445 13.621
BeLFusion 5.954 1.297 0.310 0.381 0.418 0.420 5.904

Greeting

TPK 6.779 2.545 0.555 0.615 0.571 0.598 10.781
DLow 11.897 3.112 0.530 0.590 0.542 0.564 4.262
GSPS 14.974 5.950 0.502 0.592 0.532 0.577 10.539
DivSamp 15.447 6.373 0.489 0.579 0.535 0.562 9.280
BeLFusion 8.482 1.690 0.482 0.544 0.524 0.540 11.293

Phoning

TPK 6.410 1.400 0.377 0.475 0.468 0.507 3.458
DLow 11.542 4.605 0.343 0.444 0.451 0.487 4.390
GSPS 15.050 8.120 0.311 0.413 0.436 0.476 12.037
DivSamp 15.751 8.813 0.296 0.400 0.437 0.471 13.780
BeLFusion 6.649 1.477 0.283 0.375 0.426 0.445 4.070

Photo

TPK 6.894 1.884 0.541 0.689 0.548 0.633 2.536
DLow 11.931 4.180 0.507 0.655 0.516 0.596 6.320
GSPS 14.310 6.482 0.485 0.663 0.502 0.606 11.734
DivSamp 15.330 7.428 0.474 0.665 0.506 0.607 12.886
BeLFusion 8.446 1.726 0.434 0.601 0.462 0.546 3.317

Posing

TPK 6.520 2.310 0.466 0.538 0.542 0.565 3.518
DLow 11.875 3.116 0.442 0.521 0.510 0.525 4.500
GSPS 15.149 6.399 0.415 0.527 0.498 0.543 11.039
DivSamp 15.429 6.676 0.395 0.499 0.510 0.541 11.861
BeLFusion 8.438 1.241 0.406 0.510 0.498 0.531 3.331

Purchases

TPK 7.450 2.161 0.505 0.522 0.535 0.538 11.063
DLow 11.947 2.629 0.430 0.422 0.493 0.477 5.880
GSPS 13.969 4.552 0.414 0.429 0.497 0.497 7.651
DivSamp 14.967 5.517 0.388 0.404 0.502 0.478 6.922
BeLFusion 10.272 1.738 0.410 0.409 0.494 0.472 9.564

Classes APD APDE ADE FDE MMADE MMFDE CMD

Sitting

TPK 6.417 1.167 0.400 0.547 0.461 0.548 2.004
DLow 11.425 4.972 0.364 0.513 0.440 0.523 8.565
GSPS 14.966 8.494 0.323 0.454 0.411 0.484 15.597
DivSamp 15.614 9.146 0.317 0.465 0.417 0.490 17.710
BeLFusion 6.495 1.233 0.306 0.446 0.400 0.461 1.956

SittingDown

TPK 7.393 1.864 0.496 0.678 0.531 0.666 2.475
DLow 12.044 4.576 0.451 0.605 0.495 0.606 6.147
GSPS 13.725 6.520 0.406 0.561 0.461 0.565 9.930
DivSamp 14.899 7.240 0.413 0.579 0.478 0.586 12.477
BeLFusion 9.026 2.236 0.413 0.585 0.468 0.587 2.853

Smoking

TPK 6.522 1.807 0.422 0.529 0.509 0.560 3.146
DLow 11.549 4.058 0.400 0.515 0.490 0.537 4.989
GSPS 14.822 7.332 0.366 0.485 0.472 0.530 11.445
DivSamp 15.688 8.153 0.353 0.486 0.475 0.523 14.019
BeLFusion 6.780 1.372 0.341 0.467 0.467 0.512 3.787

Waiting

TPK 6.631 2.080 0.480 0.584 0.526 0.568 3.794
DLow 11.680 3.398 0.441 0.541 0.497 0.534 4.336
GSPS 15.000 6.702 0.400 0.514 0.475 0.529 10.923
DivSamp 15.455 7.156 0.387 0.517 0.486 0.535 11.597
BeLFusion 7.747 1.542 0.390 0.507 0.471 0.511 3.609

WalkDog

TPK 7.384 2.481 0.560 0.694 0.592 0.665 12.615
DLow 11.882 2.732 0.490 0.566 0.539 0.570 7.967
GSPS 13.746 4.569 0.459 0.564 0.530 0.587 8.864
DivSamp 15.616 6.212 0.439 0.555 0.532 0.577 8.104
BeLFusion 9.335 1.893 0.432 0.530 0.527 0.569 11.334

WalkTogether

TPK 6.718 1.791 0.443 0.548 0.535 0.573 9.378
DLow 11.951 3.922 0.395 0.495 0.503 0.530 4.309
GSPS 15.030 6.994 0.316 0.440 0.473 0.516 10.010
DivSamp 16.095 8.060 0.321 0.458 0.486 0.525 10.683
BeLFusion 6.378 2.092 0.296 0.393 0.484 0.495 4.138

Walking

TPK 6.708 1.875 0.455 0.533 0.538 0.558 9.540
DLow 11.904 3.507 0.428 0.518 0.516 0.539 4.429
GSPS 14.797 6.399 0.351 0.469 0.490 0.528 9.395
DivSamp 15.964 7.566 0.373 0.535 0.508 0.547 11.190
BeLFusion 5.116 3.345 0.367 0.471 0.530 0.546 4.386

Table 4. Comparison of BeLFusion with state-of-the-art methods on H36M. Bold and underlined results correspond to the best and second-
best results, respectively. Lower is better for all metrics except APD.

D.1. Class- and dataset-wise results

Tab. 4 shows that BeLFusion achieves state-of-the-art re-
sults in most metrics in all H36M classes. We stress that
our model is especially good at predicting the future in con-
texts where the observation strongly determines the follow-
ing action. For example, when the person is Smoking, or
Phoning, a model should predict a coherent future that also

involves holding a cigar, or a phone. BeLFusion succeeds
at it, showing improvements of 9.1%, 6.3%, and 3.7% for
FDE with respect to other methods for Eating, Phoning,
and Smoking, respectively. Our model also excels in classes
where the determinacy of each part of the body needs to be
assessed. For example, for Directions, and Photo, which
often involve a static lower-body, and diverse upper-body
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Datasets APD APDE ADE FDE MMADE MMFDE CMD

DFaust

TPK 8.998 2.435 0.591 0.555 0.637 0.601 8.263
DLow 12.805 2.755 0.521 0.505 0.565 0.539 3.640
GSPS 12.870 3.218 0.504 0.508 0.564 0.556 8.150
DivSamp 25.016 14.691 0.479 0.495 0.569 0.569 57.256
BeLFusion 9.285 2.456 0.441 0.424 0.514 0.498 14.174

DanceDB

TPK 9.665 2.812 0.810 0.798 0.815 0.796 25.232
DLow 13.703 3.307 0.763 0.760 0.769 0.756 18.800
GSPS 11.792 3.121 0.747 0.764 0.758 0.765 27.113
DivSamp 23.984 13.008 0.757 0.815 0.777 0.818 31.244
BeLFusion 10.619 2.780 0.690 0.713 0.709 0.717 28.874

GRAB

TPK 8.590 1.555 0.415 0.457 0.463 0.469 9.646
DLow 12.376 5.180 0.338 0.383 0.407 0.411 15.502
GSPS 13.515 6.331 0.300 0.381 0.404 0.435 11.642
DivSamp 25.882 18.686 0.287 0.394 0.407 0.447 76.817
BeLFusion 7.421 1.111 0.260 0.323 0.375 0.388 1.321

HUMAN4D

TPK 9.451 2.618 0.657 0.732 0.662 0.705 6.305
DLow 13.083 4.571 0.562 0.629 0.583 0.612 2.888
GSPS 12.449 4.764 0.514 0.609 0.563 0.617 4.099
DivSamp 24.665 16.149 0.519 0.632 0.581 0.641 57.120
BeLFusion 9.262 2.020 0.471 0.568 0.526 0.576 10.909

SOMA

TPK 9.823 3.166 0.806 0.835 0.798 0.817 20.689
DLow 13.761 3.402 0.726 0.746 0.722 0.737 15.123
GSPS 11.867 3.665 0.715 0.779 0.710 0.765 22.222
DivSamp 24.131 13.296 0.724 0.802 0.728 0.795 35.350
BeLFusion 10.765 3.106 0.647 0.691 0.655 0.685 23.727

SSM

TPK 9.459 2.741 0.595 0.486 0.662 0.615 13.479
DLow 13.029 3.290 0.498 0.379 0.559 0.466 8.491
GSPS 12.973 3.467 0.490 0.412 0.556 0.504 12.369
DivSamp 24.993 14.164 0.474 0.416 0.580 0.568 56.610
BeLFusion 9.576 1.916 0.433 0.356 0.502 0.470 19.351

Transitions

TPK 9.525 2.217 0.696 0.672 0.706 0.658 26.234
DLow 13.308 2.461 0.599 0.538 0.615 0.550 21.308
GSPS 12.169 2.470 0.636 0.642 0.655 0.648 27.634
DivSamp 24.612 14.092 0.648 0.724 0.687 0.725 33.953
BeLFusion 10.499 2.085 0.577 0.578 0.611 0.596 27.361

Table 5. Comparison of BeLFusion with state-of-the-art methods
on AMASS. Bold and underlined results correspond to the best
and second- best results, respectively. Lower is better for all met-
rics except APD.

movements, BeLFusion improves FDE by an 8.9%, and an
8.0%, respectively. We also highlight the adaptive APD
that our model shows, in contrast to the constant variety
of motions predicted by the state-of-the-art methods. Such
effect is better observed in Fig. 10, where BeLFusion is
the method that best replicates the intrinsic multimodal di-
versity of each class (i.e., APD of the multimodal ground
truth, see Sec. 4.2). The variety of motions present in each
AMASS dataset impedes such a detailed analysis. How-
ever, we also observe that the improvements with respect
to the other methods are consistent across datasets (Tab. 5).

The only dataset where BeLFusion is beaten in an accuracy
metric (FDE) is Transitions, where the sequences consist
of transitions among different actions, without any behav-
ioral cue that allows the model to anticipate it. We also
observe that our model yields a higher variability of APD
across datasets that adapts to the sequence context, clearly
depicted in Fig. 10 as well.

Regarding the CMD, Tab. 4 and 5 show how methods
that promote highly diverse predictions are biased toward
forecasting faster movements than the ones present in the
dataset. Fig. 11 shows a clearer picture of this bias by
plotting the average predicted displacement at all predicted
frames. We observe how in all H36M classes, GSPS and
DivSamp accelerate very early and eventually stop by the
end of the prediction. We argue that such early diver-
gent motion favors high diversity values, at expense of re-
alistic transitions from the ongoing to the predicted mo-
tion. By contrast, BeLFusion produces movements that re-
semble those present in the dataset. While DivSamp fol-
lows a similar trend in AMASS than in H36M, GSPS does
not. Although DLow is far from state-of-the-art accuracy,
it achieves the best performance with regard to this metric
in both datasets. Interestingly, BeLFusion slightly deceler-
ates at the first frames and then achieves the motion closest
to that of the dataset shortly after. We hypothesize that this
effect is an artifact of the behavioral coupling step, where
the ongoing motion smoothly transitions to the predicted
behavior.

D.2. Ablation study: implicit diversity

As described in Sec. 3.3 and 4.3 of the main paper, by re-
laxing the loss regularization (i.e., increasing the number of
predictions sampled at each training iteration, k), we can in-
crease the diversity of BeLFusion’s predictions. We already
showed that by increasing k, the diversity (APD), accuracy
(ADE, FDE), and realism (FID) improves. In fact, for large
k (> 5), a single denoising step becomes enough to achieve
state-of-the-art accuracy. Still, going through the whole re-
verse Markov diffusion chain helps the predicted behavior
code move closer to the latent space manifold, thus gener-
ating more realistic predictions. In Fig. 12, we include the
same analysis for all the models in the ablation study of the
main paper. The results prove that the implicit diversity ef-
fect is not exclusive of either BeLFusion’s loss or behavioral
latent space.

E. Examples in motion
For each dataset, we include several videos where 10

predictions of BeLFusion are compared to those of meth-
ods showing competitive performance for H36M: TPK [60],
DLow [65], GSPS [39], and DivSamp [15]. Videos are
identified as ‘[dataset] [sample id] [class/subdataset]’. For
example, ‘A 6674 GRAB’ is sample 6674, which is part of
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Figure 10. Class- and dataset-wise APD. GT corresponds to the APD of the multimodal ground truth. BeLFusion is the only method that
adjusts the diversity of its predictions to model the intrinsic diversity of each class and dataset. As a result, the APD distributions between
BeLFusion and GT are very similar.

the GRAB [56] dataset within AMASS (prefix ‘A ’), and
‘H 1246 Sitting’ is the sample 1246, which is part of a ‘Sit-
ting’ sequence of H36M (prefix ‘H ’). The Context col-
umn shows the observed sequence and freezes at the last
observed pose. The GT column shows the ground truth mo-
tion.

In this section, we discuss the visual results by highlight-
ing the main advantages provided by BeLFusion and show-
ing some failure examples.

Realistic transitioning. By means of the behavior cou-
pler, BeLFusion is able to transfer predicted behaviors to
any ongoing motion with high realism. This is supported
quantitatively by the FID and CMD metrics, and percep-
tually by our qualitative assessment (Sec. 4.3). Now, we
assess it by visually inspecting several examples. For ex-
ample, when the observation shows an ongoing fast motion
(‘H 608 Walking’, ‘H 1928 Eating’ or ‘H 2103 Photo’),
BeLFusion is the only model that consistently generates a
coherent transition between the observation and the pre-
dicted behavior. Other methods mostly predict a sudden
stop of the previous action. This is also appreciated in
the cross-dataset evaluation. For example, although the ob-
servation window of the ‘A 103 Transitions’ clearly show-
cases a fast rotational dancing step, none of the state-of-the-
art methods are able to generate a plausible continuation of

the observed motion, and all of their predictions abruptly
stop rotating. BeLFusion is the only method that generates
predictions that slowly decrease its rotational momentum to
start performing a different action. A similar effect is ob-
served in ‘A 2545 DanceDB’, and ‘A 10929 HUMAN4D’.

Context-driven prediction. BeLFusion’s state-of-the-
art APDE and CMD metrics show its superior ability to ad-
just both the motion speed and motion determinacy to the
observed context. This results in sets of predictions that are,
overall, more coherent with respect to the observed context.
For example, whereas for ‘H 4 Sitting’ BeLFusion’s pre-
dicted motions showcase a high variety of arms-related ac-
tions, its predictions for sequences where the arms are used
in an ongoing action (‘H 402 Smoking’, ‘H 446 Smoking’,
and ‘H 541 Phoning’) have a more limited variety of arms
motion. In contrast, predictions from state-of-the-art meth-
ods do not have such behavioral consistency with respect
to the observed motion. This is more evident in diversity-
promoting methods like DLow, GSPS, and DivSamp, where
the motion predicted is usually implausible for a person
that is smoking or making a phone call. Similarly, in
‘H 962 WalkTogether’, our method predicts motions that
are compatible with the ongoing action of walking next to
someone, whereas other methods ignore such possibility.
In AMASS, BeLFusion’s capability to adapt to the context
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Figure 11. Predicted motion analysis. For each timestep in the future (predicted frame), the plots above show the displacement predicted
averaged across all test sequences. For H36M, GSPS and DivSamp predictions accelerate in the beginning, leading to unrealistic transitions.
For AMASS, DivSamp shows a similar behavior, and DLow beats all methods except in GRAB, where BeLFusion matches very well the
average dataset motion.
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Figure 12. Implicit diversity. By increasing the value of k, the diversity is implicitly promoted in both the latent and reconstructed
spaces (Latent APD, and APD). We observe that this is effect is not particular to the loss choice (Llat, Lrec, or both) or the latent space
construction (behavioral or not). Using the LDM to reverse the whole Markov chain of 10 steps (x-axis) helps improve diversity (APD),
accuracy (ADE), and realism (FID) in general. Note that for k > 5, only the diversity and the realism are further improved, and a single
denoising step becomes enough to generate the most accurate predictions.

is clearly depicted in sequences with low-range motion, or
where motion is focused on particular parts of the body. For
example, BeLFusion adapts the diversity of predictions to
the ‘grabbing’ action present in the GRAB dataset. While
other methods predict coordinate-wise diverse inaccurate

predictions, our model encourages diversity within the short
spectrum of the plausible behaviors that can follow (see
‘A 7667 GRAB’, ‘A 7750 GRAB’, or ‘A 9274 GRAB’).
In fact, in ‘A 11074 HUMAN4D’ and ‘A 12321 SOMA’,
our model is the only able to anticipate the intention of
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laying down by detecting subtle cues inside the observa-
tion window (samples #6 and #8). In general, BeLFusion
provides good coverage of all plausible futures given the
contextual setting. For example, in ‘H 910 SittingDown’,
and ‘H 861 SittingDown’ our model’s predictions contain
as many different actions as all other methods, with no re-
alism trade-off as for GSPS or DivSamp.

Generalization to unseen contexts. As a result
of the two properties above (realistic transitioning and
context-driven prediction), BeLFusion shows superior gen-
eralization to unseen situations. This is quantitatively sup-
ported by the big step forward in the results of the cross-
dataset evaluation. Such generalization capabilities are es-
pecially perceptible in the DanceDB6 sequences, which
include dance moves unseen at training time. For in-
stance, ‘A 2054 DanceDB’ shows how BeLFusion can pre-
dict, up to some extent, the correct continuation of a
dance move, while other methods either almost freeze
or simply predict an out-of-context movement. Simi-
larly, ‘A 2284 DanceDB’ and ‘A 1899 DanceDB’ show
how BeLFusion is able to detect that the dance moves in-
volve keeping the arms arising while moving or rotating.
In comparison, DLow, GSPS, and DivSamp simply pre-
dict other unrelated movements. TPK is only able to pre-
dict a few samples with fairly good continuations to the
dance step. Also, in ‘A 12391 SOMA’, BeLFusion is the
only method able to infer how a very challenging repetitive
stretching movement will follow.

We also include some examples where our model fails
to generate a coherent and plausible set of predictions.
This mostly happens under aggressive domain shifts. For
example, in ‘A 1402 DanceDB’, the first-seen handstand
behavior in the observation leads to BeLFusion generat-
ing several wrong movement continuations. Similarly to
the other state-of-the-art methods, BeLFusion also strug-
gles with modeling high-frequencies. For example, in
‘A 1087 DanceDB’, the fast legs motion during the ob-
servation is not reflected in any prediction, although
BeLFusion slightly shows it in samples #4 and #7. Even
though less clearly, this is also observed in H36M. For ex-
ample, in ‘H 148 WalkDog’, none of the models is able to
model the high-speed walking movement from the ground
truth. Robustness against huge domain drifts and modeling
of high-frequencies are interesting and challenging limita-
tions that need to be addressed as future work.

F. Qualitative assessment

Selection criteria. In order to ensure the assessment
of a wide range of scenarios, we randomly sampled from
three sampling pools per dataset. To generate them, we first
ordered all test sequences according to the average joint dis-

6Dance Motion Capture DB, http://dancedb.cs.ucy.ac.cy.

placement Di in the last 100 ms of observation. Then, we
selected the pools by taking sequences withDi within 1) the
top 10% (high-speed transition), 2) 40-60% (medium-speed
transition), and 3) the bottom 10% (low-speed transition).
Then, 8 sequences were randomly sampled for each group.
A total of 24 samples for each dataset were selected. These
were randomly distributed in groups of 4 and used to gener-
ate 6 tests per dataset. Since each dataset has different joint
configurations, we did not mix samples from both datasets
in the same test to avoid confusion.

Assessment details. The tests were built with the Jot-
Form7 platform. Users accessed it through a link generated
with NimbleLinks8, which randomly redirected them to one
of the tests. Fig. 13 shows an example of the instructions
and definition of realism shown to the user before start-
ing the test (left), and an example of the interface that al-
lowed the user to order the methods according to the realism
showcased (right). Note that the instructions showed either
AMASS or H36M ground truth samples, as both skeletons
have a different number of joints. A total of 126 people an-
swered the test, with 67 participating in the H36M study,
and 59 participating in the AMASS one.

Extended results. Extended results for the qualitative
study are shown in Tab. 6. We also show the results for each
sampling pool, i.e., grouping sequences by the speed of the
transition. The average rank was computed as the average
of all samples’ mean ranks, and the 1st/2nd/3rd position
percentages as the number of times a sample was placed at
1st/2nd/3rd position over the total amount of samples avail-
able. We observe that the realism superiority of BeLFusion
is particularly notable in the sequences with medium-speed
transitions (77.0% and 64.9% ranked first in H36M and
AMASS, respectively). We argue that this is partly pro-
moted by the good capabilities of the behavior coupler to
adapt the prediction to the movement speed and direction
observed. This is also seen in the high-speed set (ranked
third only in 9.8% and 14.1% of the cases), despite GSPS
showing competitive performance on it.

7https://www.jotform.com/
8https://www.nimblelinks.com/
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Figure 13. Questionnaire example. On the left, instructions shown to the participant at the beginning. On the right, the interface
for ranking the skeleton motions. All skeletons correspond to gif images that repeatedly show the observation and prediction motion
sequences.

Human3.6M [26] AMASS [37]

Avg. rank Ranked 1st Ranked 2nd Ranked 3rd Avg. rank Ranked 1st Ranked 2nd Ranked 3rd

Low-speed transition

GSPS 2.238 ± 0.305 18.0% 40.4% 41.6% 2.156 ± 0.595 22.6% 38.1% 39.3%
DivSamp 2.276 ± 0.459 15.7% 39.3% 44.9% 2.210 ± 0.373 23.8% 31.0% 45.2%
BeLFusion 1.486 ± 0.225 66.3% 20.2% 13.5% 1.634 ± 0.294 53.6% 31.0% 15.5%

Medium-speed transition

GSPS 2.305 ± 0.466 13.8% 48.3% 37.9% 2.025 ± 0.449 24.3% 50.0% 25.7%
DivSamp 2.396 ± 0.451 9.2% 36.8% 54.0% 2.497 ± 0.390 10.8% 28.4% 60.8%
BeLFusion 1.299 ± 0.243 77.0% 14.9% 8.0% 1.478 ± 0.424 64.9% 21.6% 13.5%

High-speed transition

GSPS 2.194 ± 0.320 21.7% 40.2% 38.0% 1.828 ± 0.468 44.9% 35.9% 19.2%
DivSamp 2.345 ± 0.292 15.2% 32.6% 52.2% 2.589 ± 0.409 6.4% 26.9% 66.7%
BeLFusion 1.461 ± 0.149 63.0% 27.2% 9.8% 1.583 ± 0.287 48.7% 37.2% 14.1%

All

GSPS 2.246 ± 0.358 17.9% 42.9% 39.2% 2.003 ± 0.505 30.5% 41.1% 28.4%
DivSamp 2.339 ± 0.393 13.4% 36.2% 50.4% 2.432 ± 0.408 14.0% 28.8% 57.2%
BeLFusion 1.415 ± 0.217 68.7% 20.9% 10.4% 1.565 ± 0.332 55.5% 30.1% 14.4%

Table 6. Qualitative assessment. 126 participants ranked sets of samples from GSPS, DivSamp, and BeLFusion by their realism. Lower
average rank (± std. dev.) is better.
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