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Figure 1. We present FlowMDM, a diffusion-based approach capable of generating seamlessly continuous sequences of human motion
from textual descriptions (left). The whole sequence is generated simultaneously and it does not require any postprocessing. FlowMDM
also makes strides in the challenging problem of extrapolating and controlling periodic motion such as walking, jumping, or waving (right).

Abstract
Conditional human motion generation is an important

topic with many applications in virtual reality, gaming, and
robotics. While prior works have focused on generating mo-
tion guided by text, music, or scenes, these typically result
in isolated motions confined to short durations. Instead,
we address the generation of long, continuous sequences
guided by a series of varying textual descriptions. In this
context, we introduce FlowMDM, the first diffusion-based
model that generates seamless Human Motion Composi-
tions (HMC) without any postprocessing or redundant de-
noising steps. For this, we introduce the Blended Positional
Encodings, a technique that leverages both absolute and
relative positional encodings in the denoising chain. More
specifically, global motion coherence is recovered at the ab-
solute stage, whereas smooth and realistic transitions are
built at the relative stage. As a result, we achieve state-of-
the-art results in terms of accuracy, realism, and smooth-
ness on the Babel and HumanML3D datasets. FlowMDM
excels when trained with only a single description per mo-
tion sequence thanks to its Pose-Centric Cross-ATtention,
which makes it robust against varying text descriptions at
inference time. Finally, to address the limitations of existing
HMC metrics, we propose two new metrics: the Peak Jerk
and the Area Under the Jerk, to detect abrupt transitions.

1. Introduction

In the field of computer vision, recent progress has been
made in developing photorealistic avatars [54] for appli-
cations like virtual reality, gaming, and robotics [62, 79].
Aside from looking visually realistic, these avatars must
also move in a convincing manner. This is challenging
due to the intricate nature of human motion, strongly in-
fluenced by various factors such as the environment, inter-
actions, and physical contact [14]. Furthermore, complexity
increases when attempting to control these motions. Recent
advances include the generation of motion sequences from
control signals like textual descriptions or actions [109];
however, such methods only produce isolated, standalone
motion. Therefore, these approaches fail to handle scenar-
ios where a long motion is driven by distinct control sig-
nals on different time slices. Such capability is needed to
provide full control over the sequence of desired actions
and their duration. In these scenarios, the generated motion
needs to feature seamless and realistic transitions between
actions. In this work, we tackle this problem, which we re-
fer to as generative Human Motion Composition (HMC).
In particular, we focus on generating single-human motion
from text, illustrated in Fig. 1.

One of the primary obstacles in HMC is the lack of
datasets that offer long motion sequences with diverse tex-
tual annotations. Existing datasets typically feature se-
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quences of limited duration, often lasting only up to 10 sec-
onds, and with just a single control signal governing the en-
tire sequence [26, 64]. This limitation calls for innovative
solutions to address the inherent complexities of the task.
Prior works have tackled this problem mostly with autore-
gressive approaches [4, 45, 48, 66, 104]. These methods it-
eratively create compositions by using the current motion as
a basis to generate subsequent motions. However, they re-
quire datasets with multiple consecutive annotated motions,
and tend to degenerate in very long HMC scenarios due to
error accumulation [107]. Other recent works have lever-
aged the infilling capabilities of motion diffusion models
to generate motion compositions [73, 103]. However, for
these, a substantial portion of each motion sequence is gen-
erated independently from adjacent motions, and generating
transitions requires computing redundant denoising steps.
In this work, we propose a novel architecture designed to
address these specific challenges. Our main contributions
are:
• We propose FlowMDM, the first diffusion-based model

that generates seamless human motion compositions
without any postprocessing or extra denoising steps. To
accomplish it, we introduce Blended Positional Encod-
ings (BPE), a new technique for diffusion Transformers
that combines the benefits of both absolute and relative
positional encodings during sampling. In particular, the
denoising first exploits absolute information to recover
the global motion coherence, and then leverages relative
positions to build smooth and realistic transitions between
actions. As a result, FlowMDM achieves state-of-the-art
results in terms of accuracy, realism, and smoothness in
the HumanML3D [26] and Babel [65] datasets.

• We introduce a new attention technique tailored for HMC:
the Pose-Centric Cross-ATtention (PCCAT). This layer
ensures each pose is denoised based on its own condition
and its neighboring poses. Consequently, FlowMDM can
be trained on a dataset with only a single condition avail-
able per motion sequence and still generate realistic tran-
sitions when using multiple conditions at inference time.

• We reveal the lack of sensitivity of current HMC metrics
to identify discontinuous or sharp transitions, and intro-
duce two new metrics that help to detect them: the Peak
Jerk (PJ) and the Area Under the Jerk (AUJ).

2. Related work
Conditional human motion generation. Recent studies in
motion generation have shown notable progress in synthe-
sizing movements conditioned on diverse modalities such
as text [21, 26, 27, 35, 40, 63, 81, 82, 100–102], music [2,
17, 47, 77, 84, 96, 110], scenes [15, 30, 87–89, 97], interac-
tive objects [1, 18, 42, 92], and even other humans’ behav-
ior [9, 10, 28, 80, 93]. Traditionally, these approaches have
been designed to generate motion sequences matching a sin-

gle condition. The progress of this domain has been boosted
by the release of big datasets including diverse modalities or
manual annotations [12, 26, 28, 47, 51, 60, 64, 65]. Re-
search has also focused on problems like human motion
prediction [3, 53, 57, 72, 78, 83, 86, 99] and motion infill-
ing [29, 36, 39, 49, 50, 59, 67, 69, 75, 108], which do not
rely on extensive manual annotations but rather on motion
itself. Both tasks share a common challenge with HMC:
the synthesized motion must not only be plausible but also
integrate seamlessly with the neighboring behavior, ensur-
ing fluidity and continuity. In this context, the utilization
of human motion priors has been proven to be a successful
technique to ensure any generated motion includes natural
transitions [8, 46, 91]. In line with these approaches, our
method learns a motion prior specifically tailored for HMC.

Autoregressive human motion composition. As in
many other sequence modeling tasks, HMC was also first
tackled with autoregressive methods. The gold standard has
been pairing variational autoencoders with autoregressive
decoders such as recurrent neural networks [104] or Trans-
formers [4, 45, 48, 66]. Alternative approaches have intro-
duced specialized reinforcement learning frameworks [52,
95, 105]. Autoregressive models rely on the availability of
annotated motion transitions, a requirement that constrains
the robustness of the models due to the scarcity of such
data. To mitigate this issue, some methods include addi-
tional postprocessing steps like linear interpolations [4], or
affine transformations [45]. However, these can distort the
human motion dynamics and require a predetermined esti-
mation of the transitions duration. Furthermore, autoregres-
sive approaches generate motion solely based on the preced-
ing motion. We argue that an accurate model should mimic
the humans innate capacity to anticipate their next action
and adapt their current behavior accordingly [24, 43].

Diffusion-based human motion composition. Diffu-
sion models have excelled at conditional generation [20,
32, 74]. They also possess great zero-shot capabilities for
image inpainting [70], and its equivalence in motion: mo-
tion infilling. DiffCollage [103], MultiDiffusion [7], and
DoubleTake [73] proposed to modify the diffusion sam-
pling process to simultaneously generate temporally su-
perimposed motion sequences, and combine the estimated
noise in the overlapped regions so that an infilled transi-
tion emerges. DoubleTake complemented such overlapped
sampling with a refinement step in which the emerged tran-
sition undergoes further unconditional denoising steps. All
these methods share two main limitations. First, they are
constrained to modeling dependencies among neighboring
motion sequences. This becomes a limitation when three
or more consecutive actions share semantics and collec-
tively represent a more comprehensive action. In this case,
the motion dependencies may extend beyond contiguous
actions. Second, they need to set the number of frames
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that each transition takes between consecutive actions, for
which extra computations are incorporated. Our work seeks
to address these constraints by offering a solution able to
model longer inter-sequence dynamics without imposing
extra computational burdens or predefined transition dura-
tions.

3. Methodology
Problem definition. Our goal consists in generating a mo-
tion sequence of N frames, with the capability of condition-
ing the generated motion inside non-overlapping intervals
[0, τ1), [τ1, τ2), ..., [τj , N), with 0<τ1< · · ·<τj<N . We
will refer to the motion inside these intervals as motion sub-
sequences, or Si = {xτi , ..., xτi+1−1}, each driven by its
corresponding condition ci, and with a maximum length of
L. It is essential that consecutive subsequences, influenced
by different control signals, transition seamlessly and real-
istically. In particular, we aim at the even more challeng-
ing case where motion sequences containing several pairs
of (Si, ci) are not necessarily available in our dataset.

In this section, we present FlowMDM, an architecture
with strong inductive biases that promote the emergence of
a robust translation-invariant motion prior. Such mo-
tion prior is learned with a diffusion model equipped with
a bidirectional (i.e., encoder-only) Transformer, similar to
prior works [73, 82]. With it, we overcome the main lim-
itations of autoregressive methods (Sec. 3.1). However,
previous works are constrained in terms of motion dura-
tion. We could arguably provide extrapolation capabili-
ties to the diffusion model by replacing the absolute po-
sitional encoding with a relative alternative, thus making
the denoising of each pose translation invariant. How-
ever, this technique would fail to build complex composi-
tional semantics that require knowledge about the start and
end of each subsequence. For example, when generating
the motion composition Si→Si+1 with ci=‘walking’ and
ci+1=‘walk and sit down’, Si+1 might only feature the ac-
tion ‘sit down’ because, with only relative positional infor-
mation, the Transformer cannot know if the partially de-
noised ‘walking’ motion preceding the beginning of Si+1

belongs to Si or Si+1. To combine the benefits of both rel-
ative and absolute positional encodings, we introduce BPE
(Sec. 3.2). This novel technique exploits the iterative nature
of diffusion models to promote intra-subsequence global
coherence in earlier denoising stages, while making later
denoising stages translation invariant, ensuring that realis-
tic and plausible transitions naturally emerge between sub-
sequences. Still, during training, the condition remains un-
changed throughout all ground truth motion sequences. In
order to make our denoising model robust to having mul-
tiple conditions per sequence at inference, we introduce a
new attention paradigm called PCCAT (Sec. 3.3). As a
result, FlowMDM is able to simultaneously generate very

long compositions of human motion subsequences, all in
harmony and fostering plausible transitions between them,
without explicit supervision on transitions generation.

3.1. Bidirectional diffusion

The cumulative nature of errors in autoregressive models
often results in a decline in performance when generating
long sequences [107]. This is exacerbated in HMC, where
transitions are scarce or even missing in the training corpus,
and the model needs to deal with domain shifts at infer-
ence. Another limitation of autoregressive methods is that
the generated Si only depends on {Sj}j<i. We discussed
in Sec. 2 why this is a suboptimal solution for HMC. Thus,
an appropriate model for HMC should also be able to an-
ticipate the following motion, Si+1, and possibly adapt Si

so that the transition is feasible. We argue that the iterative
paradigm of diffusion models provides very appropriate in-
ductive biases for naturally mimicking such ability: the par-
tially denoised Si and Si+1 are refined later in successive
denoising steps. By choosing a bidirectional Transformer
as our denoising function [38], we enable the modeling of
both past and future dependencies. Therefore, we design
our framework as a bidirectional motion diffusion model,
similar to MDM [82]. We refer the reader to [94] for more
details on the theoretical aspects of diffusion models.

3.2. Blended positional encodings

Diffusion models can learn strong motion priors that ensure
any motion generated is realistic and plausible [73]. In fact,
they can also generate smooth transitions between subse-
quences [7, 73, 103]. However, these capabilities stem from
inference-time motion infilling techniques, which we argue
do not exploit the full potential of human motion priors.
In fact, building a prior that extrapolates well to sequences
longer than those observed during training is very challeng-
ing. The field of natural language processing has made
progress in sequence extrapolation techniques, notably by
substituting absolute positional encoding (APE) with a rela-
tive (RPE) counterpart [37]. By only providing information
regarding how far tokens are between them, they achieve
sequence-wise translation invariance and, therefore, can ex-
trapolate their modeling capabilities to longer sequences.
Yet, the absolute positions of poses within a motion, in-
cluding their distances to the start and end of the action,
are necessary to build the global semantics of the motion,
as exemplified at the beginning of this section.

Here, we propose BPE, a novel positional encoding
scheme designed for diffusion models that enables motion
extrapolation while preserving the global motion seman-
tics. Our BPE is inspired by the observation that in mo-
tion, high frequencies encompass local fine details, whereas
low frequencies capture global structures. Similar insights
have been drawn for images [61]. Diffusion models ex-
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Figure 2. Attention scores of a single query pose (current frame)
as a function of the pose attended to (x-axis) in a diffusion-based
motion generation model with a sinusoidal absolute positional en-
coding. Curves show the scores at each denoising step. We ob-
serve that, whereas early steps show strong global dependencies
(blue), later denoising stages exhibit a clearly local behavior (red).

cel at decomposing the generation process into recovering
lower frequencies, and gradually transitioning to higher fre-
quencies. Fig. 2 shows how at early denoising phases, mo-
tion diffusion models prioritize global inter-frame depen-
dencies, shifting towards local relative dependencies as the
process unfolds. The proposed BPE harmonizes these dy-
namics during inference: at early denoising stages, our de-
noising model is fed with an APE and, towards the conclu-
sion, with an RPE. A scheduler guides this transition. As
a result, intra-subsequence global dependencies are recov-
ered at the beginning of the denoising, and intra- and inter-
subsequences motion smoothness and realism are promoted
later. To make the model understand APE and RPE at infer-
ence, we expose it to both encodings by randomly alternat-
ing them during training. As a result, the BPE schedule can
be tuned at inference time to balance the intra-subsequence
coherence and the inter-subsequence realism trade-off.

Rotary Position Encoding (RoPE). Our choice for RPE
is rotary embeddings [76]. RoPE integrates a position em-
bedding into the queries and keys, ensuring that after dot-
product multiplication, the attention scores’ positional in-
formation reflects only the relative pairwise distance be-
tween queries and keys. Specifically, let Wq and Wk be the
projection matrices into the d-dimensional spaces of queries
and keys. Then, RoPE encodes the absolute positions m and
n of a pair of query (qm=Wqxm) and key (kn=Wkxn), re-
spectively, as d-dimensional rotations Rd

m, Rd
n over the pro-

jected poses xm, xn. The rotation angles are parameterized
by m and n so that the attention formulation becomes:

qTmkn = (Rd
mWqxm)T (Rd

nWkxn) = xT
mWqR

d
n−mWkxn. (1)

Note that the resulting rotation Rd
n−m only depends on

the distance between n and m, and any absolute information
about n or m is removed. RoPE is a natural choice for our
RPE due to its simplicity and convenient injection before
the attention takes place. As a result, RoPE is compatible
with faster attention techniques like FlashAttention [22, 23].

Sinusoidal Position Encoding. Our APE is the classic
sinusoidal position encoding [85], which leverages sine and

cosine functions to inject positional information. It is added
to the queries, keys, and values of the attention layers.

Note that for APE, attention is limited to each subse-
quence, while for RPE, attention spans all frames up to the
attention horizon H<L<N . Since L defines the maximum
range of motion dynamics learned during RPE training,
there is no advantage in setting H≥L (Tabs. D/E in supp.
material). Leveraging both APE and RPE constraints en-
sures quadratic complexity over the maximum subsequence
length L in both memory and computation [11]. As a re-
sult, FlowMDM’s complexity is equivalent to that of other
Transformer-based motion diffusion models [73, 103].

3.3. Pose-centric cross-attention

In order to make motion generation with diffusion mod-
els efficient, we would like to simultaneously generate very
long sequences. In motion Transformers, the generation is
conditioned at a sequence level by injecting the condition as
a token [82], or as a sequence-wise transformation in inter-
mediate layers [102]. Therefore, they cannot be conditioned
on multiple signals in different subsequences. For this rea-
son, diffusion-based methods for HMC opted for individu-
ally generating sequences and then merging them [73, 103].
To enable such simultaneous heterogeneous conditioning
without any extra postprocessing, we propose to inject the
condition at every frame. However, we still need to deal
with a challenge: the condition never varies at training
time. Therefore, at inference time, attention scores are com-
puted with the embeddings Exm,cm and Exn,cn of the pose-
condition pairs (xm, cm) and (xn, cn) as:

qTmkn = (WqExm,cm)T (WkExn,cn) = ET
xm,cmWT

q WkExn,cn .
(2)

When cm ̸=cn, qTmkn was never encountered during train-
ing. If instead of injecting the condition at every frame, we
used cross-attention layers, distinct conditions would also
be temporally mixed, and we would face the same prob-
lem. To reduce the presence and impact of such training-
inference misalignment, we introduce PCCAT, see Fig. 3,
which aims at minimizing the entanglement between condi-
tions and noisy poses. Specifically, PCCAT combines every
frame’s noisy pose and condition into queries, while using
only noisy poses as keys and values. Thus, Eq. 2 becomes:

qTmkn = (WqExm,cm)T (WkExn) = ET
xm,cmWT

q WkExn . (3)

With PCCAT, the attention output for pose m becomes a
weighted average of the value projections of its neighboring
noisy poses. A residual connection adds the PCCAT output
to the noisy poses. With comprehensive coverage of the mo-
tion spectrum in the training dataset, the network observes
various poses preceding and following each pose, particu-
larly within its local neighborhood. Therefore, local rela-
tionships do not suffer from unseen intermediate represen-
tations. Still, there is an obstacle to address: long-range de-
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Figure 3. Pose-centric cross-attention. Our attention minimizes
the entanglement between the control signal (e.g., text, objects)
and the noisy motion by feeding the former only to the query.
Consequently, our model denoises each frame’s noisy pose only
leveraging its own condition, and the neighboring noisy poses.

pendencies. However, as discussed in Sec. 3.2, their impor-
tance is mostly confined to the initial stages of denoising.
There, the network is exposed to very noisy motion data,
thus becoming robust to such unseen combinations of poses.
In the latest denoising stages, when the network deals with
almost clean input sequences, global dependencies have al-
ready been developed and attention is short-ranged (Fig. 2).

4. Experiments

4.1. Experimental setup

Datasets. Our experiments are conducted on the Babel [65]
and HumanML3D [26] datasets, with their train and test
splits. HumanML3D features multiple textual descriptions
of each motion sequence, but lacks explicit transition an-
notations, making supervised learning infeasible for transi-
tion generation. Babel, on the other hand, provides finely-
grained textual descriptions at an atomic level, including
transitions, which facilitates more precise and dynamic mo-
tion control but also presents a greater challenge due to
fast and short transitions. To demonstrate the flexibility of
FlowMDM, we employ the standard motion representations
provided with each dataset. HumanML3D utilizes a 263D
pose vector that includes joint coordinates, angles, veloci-
ties, and feet contact. By contrast, Babel uses the global po-
sition and orientation and a 6D rotation representation [106]
of the SMPL model joints [13], as in [63].

Evaluation. Our evaluation uses the metrics established
by [26], and later refined for this task in [48, 73, 95]. More
specifically, motion sequences are synthesized as compo-
sitions of 32 pairs of textual descriptions and their dura-
tions. The 32 subsequences and the 31 transitions between
Si−1 and Si pairs are evaluated independently. In partic-
ular, each transition is defined as the set of consecutive
poses {xτi−Ltr/2, . . . , xτi+Ltr/2−1}, sharing Ltr

2 frames
with Si−1 and Si. The transition duration Ltr is set to 30

and 60 frames for Babel and HumanML3D (1 and 3 sec-
onds), respectively. The top-3 R-precision (R-prec), and
the multimodal distance (MM-Dist) are used to evaluate
how well the subsequences’ motion matches their textual
description [26]. The FID score and the average pairwise
distance among all motion embeddings (diversity) assess
the quality and variety of both subsequences and transitions,
respectively [26, 31]. All metrics are averaged over 10 runs
with 95% confidence intervals reported.

Closing the gap: the Jerk. Generative models are hard
to evaluate [19, 71, 94]. The FID score [31] has proven to
be a very reliable metric in quantifying the similarity be-
tween distributions of generated and real motion data while
being sensitive to motion artifacts or noise [55]. Neverthe-
less, exclusively relying on perceptual metrics like FID for
assessing transition quality can be misleading due to their
insensitivity to motion anomalies such as abrupt accelera-
tions [8], or foot skating [56]. To complement the FID, our
work introduces two novel metrics built upon the concept of
jerk (i.e., the time derivative of acceleration), which is in-
dicative of motion smoothness and known to be sensitive to
kinetic irregularities [5, 6, 16, 25, 34, 44, 98]. Given that
natural human motion typically exhibits constrained jerk
due to relatively consistent acceleration patterns [25, 44],
our metrics are tailored to highlight persistent deviations
from this norm in generated transitions. Firstly, we com-
pute the Peak Jerk (PJ), taking the maximum value found
throughout the transition motion over all joints. While this
measure captures extreme fluctuations, it may favor mod-
els that unnaturally smooth transitions across several wider
peaks of jerk. To measure this undesirable effect, we in-
troduce the Area Under the Jerk (AUJ), calculated as the
sum of L1-norm differences between a method’s instanta-
neous jerk and the dataset’s average jerk value. This mea-
sure serves as an aggregate indicator of motion smoothness,
quantifying the cumulative deviation from natural human
movement across the entire transition. The PJ and AUJ of a
transition are formally defined as follows:

PJ = max
1≤i≤K
1≤τ≤Ltr

|ji(τ)|1, AUJ =
Ltr∑
τ=1

max
1≤i≤K

|ji(τ)−javg|1,

(4)
where ji(τ) is the jerk at time τ for joint i, K is the number
of joints, and javg is the average joints-wise maximum jerk
across the dataset.

Baselines. We compare our method to publicly released
related works that can generate sequential motions from
text: the autoregressive TEACH [4], and the diffusion sam-
pling techniques DoubleTake [73], DiffCollage [103], and
MultiDiffusion [7]. Sampling techniques are evaluated with
PCCAT and APE for a fairer comparison. Additionally, we
evaluate TEACH with its spherical linear interpolation over
transitions turned off (TEACH B), and DoubleTake with
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Figure 4. Transitions smoothness. Average maximum jerk over joints at each frame of the transitions for both motion composition
(left) and extrapolation (right) tasks. While other methods show severe smoothness artifacts in the beginning and end of their transition
refinement processes, FlowMDM’s jerk curve has the shortest peak for composition, and an absence of peaks for extrapolation.

Subsequence Transition
R-prec ↑ FID ↓ Div → MM-Dist ↓ FID ↓ Div → PJ → AUJ ↓

GT 0.715±0.003 0.00±0.00 8.42±0.15 3.36±0.00 0.00±0.00 6.20±0.06 0.02±0.00 0.00±0.00

TEACH B 0.703±0.002 1.71±0.03 8.18±0.14 3.43±0.01 3.01±0.04 6.23±0.05 1.09±0.00 2.35±0.01

TEACH 0.655±0.002 1.82±0.02 7.96±0.11 3.72±0.01 3.27±0.04 6.14±0.06 0.07±0.00 0.44±0.00

DoubleTake* 0.596±0.005 3.16±0.06 7.53±0.11 4.17±0.02 3.33±0.06 6.16±0.05 0.28±0.00 1.04±0.01

DoubleTake 0.668±0.005 1.33±0.04 7.98±0.12 3.67±0.03 3.15±0.05 6.14±0.07 0.17±0.00 0.64±0.01

MultiDiffusion 0.702±0.005 1.74±0.04 8.37±0.13 3.43±0.02 6.56±0.12 5.72±0.07 0.18±0.00 0.68±0.00

DiffCollage 0.671±0.003 1.45±0.05 7.93±0.09 3.71±0.01 4.36±0.09 6.09±0.08 0.19±0.00 0.84±0.01

FlowMDM 0.702±0.004 0.99±0.04 8.36±0.13 3.45±0.02 2.61±0.06 6.47±0.05 0.06±0.00 0.13±0.00

Table 1. Comparison of FlowMDM with the state of the art in Babel. Symbols ↑, ↓, and → indicate that higher, lower, or values closer to
the ground truth (GT) are better, respectively. Evaluation is run 10 times and ± specifies the 95% confidence intervals.

Subsequence Transition
R-prec ↑ FID ↓ Div → MM-Dist ↓ FID ↓ Div → PJ → AUJ ↓

GT 0.796±0.004 0.00±0.00 9.34±0.08 2.97±0.01 0.00±0.00 9.54±0.15 0.04±0.00 0.07±0.00

DoubleTake* 0.643±0.005 0.80±0.02 9.20±0.11 3.92±0.01 1.71±0.05 8.82±0.13 0.52±0.01 2.10±0.03

DoubleTake 0.628±0.005 1.25±0.04 9.09±0.12 4.01±0.01 4.19±0.09 8.45±0.09 0.48±0.00 1.83±0.02

MultiDiffusion 0.629±0.002 1.19±0.03 9.38±0.08 4.02±0.01 4.31±0.06 8.37±0.10 0.17±0.00 1.06±0.01

DiffCollage 0.615±0.005 1.56±0.04 8.79±0.08 4.13±0.02 4.59±0.10 8.22±0.11 0.26±0.00 2.85±0.09

FlowMDM 0.685±0.004 0.29±0.01 9.58±0.12 3.61±0.01 1.38±0.05 8.79±0.09 0.06±0.00 0.51±0.01

Table 2. Comparison of FlowMDM with the state of the art in HumanML3D.

MDM, as originally proposed (DoubleTake*). TEACH and
TEACH B cannot be trained for HumanML3D due to the
lack of pairs of consecutive actions and textual descriptions.

Implementation details. We tune the hyperparameters
of all models with grid search. The attention horizon for
RPE, H , is set to 100/150 for Babel/HumanML3D. The
number of diffusion steps is 1K for all experiments. Our
model is trained with the x0 parameterization [90], and min-
imizes the L2 reconstruction loss. During training, RPE and
APE are alternated randomly at a frequency of 0.5. We use
classifier-free guidance with weights 1.5/2.5 [33]. We use
a binary step function to guide the BPE sampling, yielding
125/60 initial APE steps. The minimum/maximum lengths
for training subsequences are set to 30/200 and 70/200
frames (i.e., 1/6.7s and 3.5/10s). For Babel, training sub-
sequences include consecutive ground truth motions with
distinct textual descriptions in order to increase the motions
variability, and make the network explicitly robust to mul-
tiple conditions. The ablation study includes two condi-
tioning baselines: 1) concatenating each frame’s condition

and noisy pose, and replacing the PCCAT with vanilla self-
attention (SAT), and 2) injecting the condition with cross-
attention layers (CAT). See more details in supp. material
Sec. A.

4.2. Quantitative analysis

Comparison with the state of the art on HMC. Tables
1 and 2 show the comparison of FlowMDM with current
state-of-the-art models in Babel and HumanML3D datasets,
respectively. In HumanML3D, our model outperforms by
a fair margin the other methods in terms of subsequence
accuracy-wise metrics (R-prec and MM-Dist), and FID. In
Babel, it matches the state of the art in accuracy and excels
in FID score. FlowMDM produces transitions of higher
quality and smoothness on both datasets, as indicated by
FID, PJ, and AUJ metrics. The lack of correlation be-
tween the FID score and the AUJ underscores the impor-
tance of the latter as a complementary metric for assess-
ing smoothness. Fig. 4-left shows the average jerk values
across the generated transitions. We observe that state-of-
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Subsequence Transition
Cond. Train. PE Inf. PE R-prec ↑ FID ↓ Div → MM-Dist ↓ FID ↓ Div → PJ → AUJ ↓

GT - - 0.715±0.003 0.00±0.00 8.42±0.15 3.36±0.00 0.00±0.00 6.20±0.06 0.02±0.00 0.00±0.00

PCCAT A A 0.699±0.004 1.34±0.04 8.36±0.12 3.40±0.02 4.26±0.07 5.98±0.06 1.81±0.01 3.73±0.01

PCCAT R R 0.635±0.006 1.28±0.03 8.05±0.11 4.02±0.02 2.18±0.07 6.14±0.08 0.03±0.00 0.20±0.00

PCCAT B A 0.716±0.006 1.20±0.04 8.31±0.14 3.32±0.02 3.01±0.06 6.35±0.07 1.78±0.01 3.66±0.02

PCCAT B R 0.635±0.004 0.85±0.02 8.25±0.12 3.98±0.02 2.14±0.04 6.44±0.09 0.04±0.00 0.15±0.00

SAT B B 0.681±0.004 1.52±0.04 8.22±0.11 3.61±0.02 1.91±0.03 6.41±0.07 0.06±0.00 0.12±0.00

CAT B B 0.719±0.004 1.29±0.02 8.16±0.13 3.27±0.02 2.57±0.08 6.06±0.07 0.02±0.00 0.07±0.00

PCCAT B B 0.702±0.004 0.99±0.04 8.36±0.13 3.45±0.02 2.61±0.06 6.47±0.05 0.06±0.00 0.13±0.00

Table 3. Ablation study in Babel. Cond. indicates the conditioning scheme, Train./Inf. PE specify the positional encodings (PE) used at
training/inference time, and A, R, and B refer to absolute, relative, and blended PE, respectively. ↑, ↓, and → indicate that higher, lower,
or values closer to the ground truth (GT) are better, respectively. Evaluation is run 10 times and ± specifies the 95% confidence intervals.

Subsequence Transition
Cond. Train. PE Inf. PE R-prec ↑ FID ↓ Div → MM-Dist ↓ FID ↓ Div → PJ → AUJ ↓

GT - - 0.796±0.004 0.00±0.00 9.34±0.08 2.97±0.01 0.00±0.00 9.54±0.15 0.04±0.00 0.07±0.00

PCCAT A A 0.689±0.005 0.66±0.02 9.73±0.12 3.63±0.02 3.90±0.12 8.29±0.08 1.50±0.01 3.40±0.02

PCCAT R R 0.531±0.005 1.75±0.07 8.71±0.10 4.80±0.03 2.53±0.12 8.62±0.08 0.03±0.00 0.58±0.01

PCCAT B A 0.699±0.005 0.61±0.02 9.76±0.10 3.54±0.02 2.42±0.09 8.39±0.09 1.40±0.01 3.29±0.02

PCCAT B R 0.554±0.007 1.06±0.06 9.02±0.11 4.54±0.02 1.12±0.04 9.00±0.10 0.05±0.00 0.53±0.01

SAT B B 0.692±0.004 0.49±0.02 9.08±0.09 3.51±0.01 3.19±0.08 8.09±0.11 0.04±0.00 0.36±0.02

CAT B B 0.622±0.005 1.27±0.04 8.86±0.15 4.10±0.01 3.93±0.14 8.23±0.10 0.04±0.00 0.49±0.02

PCCAT B B 0.685±0.004 0.29±0.01 9.58±0.12 3.61±0.01 1.38±0.05 8.79±0.09 0.06±0.00 0.51±0.01

Table 4. Ablation study in HumanML3D.

the-art methods exhibit severe smoothness artifacts. Dur-
ing TEACH’s spherical linear interpolation, the jerk quickly
reaches values near zero. By contrast, DiffCollage leans to-
ward higher-than-average jerk values, while MultiDiffusion
exhibits the opposite trend. DoubleTake shows three peaks,
caused by their two-stage noise estimation process. In com-
parison, FlowMDM successfully minimizes peak jerk val-
ues, producing the smoothest transitions between subse-
quences. See supp. material Sec. C for in-depth analyses.

Human motion extrapolation. In single text-to-motion,
the duration of the generated motion is limited to the longest
subsequence length L available in the training set. Extrap-
olating periodic actions into sequences longer than those in
the ground truth presents a notable challenge. Achieving
this through HMC requires the harmonization of periodic-
ity across adjacent subsequences. However, common strate-
gies that combine independently generated subsequences
often disrupt the periodicity of the motion. To assess our
model’s capabilities in addressing this issue, we construct
an evaluation set comprising 32 consecutive repetitions of
32 different extrapolatable actions such as ‘walk forward’,
‘jumping’, or ‘playing the guitar’, extracted from the Babel
and HumanML3D test sets (more details in supp. material
Sec. B). Fig. 4-right displays the motion jerk across tran-
sitions for all models on this task. We observe that, while
other models exhibit smoothness anomalies similar to those
shown in the HMC evaluation, FlowMDM closely mirrors
the ground truth jerk. This observation indicates that the
jerk peak noted in FlowMDM for the composition task is
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Subsequences Transitions

Figure 5. BPE trade-offs. Increasing the number of APE steps
undergone during BPE sampling improves the correspondence be-
tween motion and textual description (R-prec), but reduces the
transition realism and smoothness (FID and AUJ). The best bal-
ance is reached around 10% of APE denoising steps.

likely attributed to smoothness irregularities in more com-
plex transitions.

Ablation study. The effectiveness of BPE and PCCAT is
presented in Tables 3 and 4. Reasonably, the baseline model
trained solely with APE fails to generate smooth transitions.
Conversely, a model trained only with RPE, despite produc-
ing the smoothest transitions, struggles to model global mo-
tion dependencies and accurately reflect the corresponding
textual descriptions. Interestingly, training with BPE im-
proves the performance of both APE- and RPE-only sam-
plings. Sampling with BPE combines the best of both
worlds by preserving the excellent AUJ values of the RPE
models and reaching the state-of-the-art accuracy and FID
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Figure 6. Qualitative analysis (Babel). A) and B) show compositions of 3 motions (‘walk straight’−→‘side steps’−→‘walk backward’, and
‘walk’−→‘turn around’−→‘sit on the bench’, respectively), and C) and D) illustrate extrapolations that repeat 6 times a static (‘t-pose’) and
a dynamic (‘step to the right’) action, respectively. Solid curves match the trajectories of the global position (blue) and left/right hands
(purple/green). Darker colors indicate instantaneous jerk deviations from the median value, saturating at twice the jerk’s standard deviation
in the dataset (black segments). Abrupt transitions manifest as black segments amidst lighter ones. FlowMDM exhibits the most fluid
motion and preserves the staticity or periodicity of extrapolated actions, in contrast to other methods that show spontaneous high jerk
values and fail to keep the motion coherence in extrapolations.

scores of the APE models. Fig. 5 illustrates this balance.
Specifically, increasing the number of APE steps enhances
the motion’s congruence with the textual description, at the
cost of reducing the smoothness and realism of the tran-
sitions. In HumanML3D, the SAT and CAT conditioning
schemes lead to worse transitions in terms of FID and di-
versity. This is caused by the coexistence of different con-
ditions in the local neighborhood of the transition at infer-
ence, which never happens during training. Our PCCAT
conditioning technique effectively solves this problem. In
Babel, such effect is not present because the training motion
sequences include several subsequences, thus increasing the
model’s robustness to transitions with varying conditions.

On the efficiency of FlowMDM. Diffusion-based state-
of-the-art methods such as MultiDiffusion and DiffCollage
denoise poses from the transition more than once in order to
harmonize it with the adjacent motions. DoubleTake’s tran-
sitions undergo an additional denoising process, which adds
computational burden and can not be parallelized. Oppo-
sitely, FlowMDM does not apply redundant denoising steps
to any pose. In particular, our model goes through 47.1%,
28.4%, and 16.5% less pose-wise denoising steps than Dou-
bleTake, DiffCollage, and MultiDiffusion, respectively.

4.3. Qualitative results

Fig. 6 illustrates how our quantitative findings translate into
visual outcomes on the human motion composition and ex-
trapolation tasks. First, as anticipated by Fig. 4, we con-
firm that state-of-the-art methods produce short intervals of

jerk peaks around transitions. These do not typically match
long-range motion scenarios, where such jerks might be
contextually appropriate. Contrarily, FlowMDM produces
motion that is realistic, accurate, and smooth. Particularly,
we notice that DiffCollage’s bias toward producing con-
stantly high jerk values around transitions is perceived as
an overall chaotic motion. Due to the independent gener-
ation of their subsequences, DoubleTake, DiffCollage, and
MultiDiffusion are unable to maintain the static or periodic
nature of actions when extrapolating them. Only TEACH
and FlowMDM are able to successfully extrapolate a static
‘t-pose’, and ours is the only one capable of extrapolating a
’step to the right’ sequence realistically. Finally, FlowMDM
also inherits the trajectory control capabilities of motion dif-
fusion models as shown in Fig. 1-right.

5. Conclusion

We presented FlowMDM, the first approach that generates
human motion compositions simultaneously, without un-
dergoing postprocessing or redundant denoising diffusion
steps. We also introduced the blended positional encodings
to combine the benefits of absolute and relative positional
encodings during the denoising chain. Finally, we presented
the pose-centric cross-attention, a technique that improves
the generation of transitions when training with only a sin-
gle condition per motion sequence.

Limitations and future work. The absolute stage of
BPE does not model relationships between subsequences.
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Consequently, their low-frequency spectrum is generated
independently. This limitation could be addressed in fu-
ture work by incorporating an intention planning module.
Finally, our method learns a strong motion prior that gener-
ates transitions between combinations of actions never seen
at training time. Such capability could theoretically be used
with different models leveraging different control signals,
assuming they all are trained under the same framework.
Future work will experimentally validate this hypothesis.
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calera, Wei-Wei Tu, Isabelle Guyon, and Cristina Palmero.
Comparison of spatio-temporal models for human motion
and pose forecasting in face-to-face interaction scenarios.

In Understanding Social Behavior in Dyadic and Small
Group Interactions, pages 107–138. PMLR, 2022. 2

[11] Iz Beltagy, Matthew E Peters, and Arman Cohan. Long-
former: The long-document transformer. arXiv preprint
arXiv:2004.05150, 2020. 4

[12] Bharat Lal Bhatnagar, Xianghui Xie, Ilya A Petrov, Cristian
Sminchisescu, Christian Theobalt, and Gerard Pons-Moll.
Behave: Dataset and method for tracking human object in-
teractions. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 15935–
15946, 2022. 2

[13] Federica Bogo, Angjoo Kanazawa, Christoph Lassner, Pe-
ter Gehler, Javier Romero, and Michael J Black. Keep it
smpl: Automatic estimation of 3d human pose and shape
from a single image. In Computer Vision–ECCV 2016: 14th
European Conference, Amsterdam, The Netherlands, Octo-
ber 11-14, 2016, Proceedings, Part V 14, pages 561–578.
Springer, 2016. 5, 20

[14] Paulo Vinicius Koerich Borges, Nicola Conci, and Andrea
Cavallaro. Video-based human behavior understanding: A
survey. IEEE transactions on circuits and systems for video
technology, 23(11):1993–2008, 2013. 1

[15] Zhe Cao, Hang Gao, Karttikeya Mangalam, Qi-Zhi Cai,
Minh Vo, and Jitendra Malik. Long-term human mo-
tion prediction with scene context. In Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK, Au-
gust 23–28, 2020, Proceedings, Part I 16, pages 387–404.
Springer, 2020. 2

[16] Angela Castillo, Maria Escobar, Guillaume Jeanneret, Al-
bert Pumarola, Pablo Arbeláez, Ali Thabet, and Artsiom
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Supplementary Material

A. Further implementation details
All values are reported as X/Y for Babel/HumanML3D, or
as Z if values are equal for both. Note that motion sequences
are downsampled to 30/20 fps.

State-of-the-art models. TEACH is used off-the-shelf 1

with the originally proposed alignment and spherical lin-
ear interpolation, and without them (TEACH B). Double-
Take is used off-the-shelf 2 from their original repository,
with the parameters handshake size and blending length set
to 10/20f (frames), and 10/5f, respectively. To fulfill the
constraints of their method, the handshake size needs to be
shorter than half the shortest sequence we want to gener-
ate, which is 30f (1s) for Babel. Since DoubleTake uses the
original Motion Diffusion Model [82], whose training dis-
carded very short sequences, it underperforms in our more
comprehensive evaluation protocol (see Sec. B). For a fairer
comparison, we also evaluate it using our diffusion model
with absolute positional encodings (APE), and call it Dou-
bleTake*. DoubleTake* uses the same handshake size and
blending length as DoubleTake. DiffCollage and MultiDif-
fusion were implemented manually, and utilize our model
as well for the same reasons mentioned earlier. We set their
sampling parameter transition length to 10/20f. For Dou-
bleTake, DiffCollage, and MultiDiffusion, we use classifier-
free guidance with weights 1.5/2.5 during sampling.

FlowMDM. Our diffusion model uses 1k steps and a co-
sine noise schedule [58]. FlowMDM is trained with the x0

parameterization [90], and an L2 reconstruction loss. De-
noising timesteps are encoded as a sinusoidal positional en-
coding that goes through two dense layers into a 512D vec-
tor. Textual descriptions are tokenized and embedded with
CLIP [68] into 512D vectors. Poses of 135/263D are en-
coded by a dense layer into a sequence of 512D vectors.
If the APE is active, a sinusoidal encoding is added to the
embedded poses at this stage. Then, the embedded poses
are taken as the keys and values of a Transformer. Embed-
ded poses are concatenated to the sum of the timesteps and
text embeddings, and fed to a dense layer. The resulting
512D vectors are the queries. If the relative positional en-
coding (RPE) is active, rotary embeddings [76] are injected
to the queries and keys at this stage. The output of the
Transformer is added to the embedded poses with a resid-
ual connection. 8 Transformers are stacked together. A final
dense layer converts the pose embeddings back to a vector
of 135/263D, which are the denoised poses. A dropout of
0.1 is applied to the APE, and to the inputs of the Trans-

1https : / / github . com / athn - nik / teach / commit /
f4285aff0fd556a5b46518a751fc90825d91e68b

2https://github.com/priorMDM/priorMDM/commit/
8bc565b3120c08182f067e161e83403b0efe7cc9

formers. The attention span of the Transformers is capped
within each subsequence during the APE stage, and within
the attention horizon H=100/150f during the RPE stage. We
train with blended positional encodings (BPE), i.e., RPE
and APE are alternated randomly at a frequency of 0.5. We
use Adam [41] with learning rate of 0.0001 as our optimizer,
and train for 1.3M/500k steps in a single RTX 3090 (about
4/2 days). During BPE sampling, the binary step schedule
transitions from absolute to relative mode after 125/60 de-
noising steps (out of 1k steps). Classifier-free guidance with
weights 1.5/2.5 is used during sampling.

B. Evaluation details
Generative models are difficult to evaluate and compare due
to the limitations of the metrics (discussed in Sec. 4.1) and
the stochasticity present during sampling. To alleviate the
latter, we run all our evaluation 10 times and provide the
95% confidence intervals. However, we still face another
issue in our task: the randomness in the combinations of
textual descriptions. The generation difficulty for the com-
bination ‘sit down’→‘stand up’→‘run’ is not the same as
for ‘sit down’→‘run’→‘stand up’. The evaluation protocol
from [73] includes 32 evaluation sequences of 32 randomly
sampled textual descriptions from the test set. The gener-
ated motion needs to perform sequentially the 32 actions
from each evaluation sequence. However, these descrip-
tions are sampled differently in each evaluation run, which
hinders reproducibility. In order to ensure proper replica-
tion and a fair comparison in future works, we propose a
more thorough and fully reproducible evaluation protocol
that enables a more fine-grained analysis based on scenar-
ios (analysis provided in Sec. C.1):

Babel. We built two scenarios with in-distribution
(50%) and out-of-distribution (50%) combinations. For the
in-distribution scenario, we first selected test motion se-
quences showcasing at least three consecutive actions (i.e.,
textual descriptions) with a total duration of 1.5s. Then, we
randomly sampled from them to build 32 sets of 32 combi-
nations of textual descriptions. For the out-of-distribution
scenario, 32 sets were built by autoregressively sampling
32 textual descriptions so that consecutive actions did not
appear together neither in the training nor in the test set.

HumanML3D. Since annotations in HumanML3D do
not include consecutive actions, we cannot build in- and
out-of-distribution scenarios. However, this dataset con-
tains a great variability of sequence lengths (3-10s). There-
fore, we decided to build four scenarios by varying the
length of the subsequences included. More specifically, we
created three sets of 6, 8, and 18 combinations (9.4, 12.5,
28.1%) by sampling 32 short (3-5s), medium (5-8s), and
long (8-10s) test motions, respectively. Ratios were set so
that all together preserved the proportion of short, medium,
and long subsequences in the original test set. This is impor-

14

https://github.com/athn-nik/teach/commit/f4285aff0fd556a5b46518a751fc90825d91e68b
https://github.com/athn-nik/teach/commit/f4285aff0fd556a5b46518a751fc90825d91e68b
https://github.com/priorMDM/priorMDM/commit/8bc565b3120c08182f067e161e83403b0efe7cc9
https://github.com/priorMDM/priorMDM/commit/8bc565b3120c08182f067e161e83403b0efe7cc9


tant to keep the validity of statistical measures like FID. Ad-
ditionally, we included another scenario with 32 sets (50%)
of 32 random motion sequences from the test set.

We share the list of evaluation combinations for both the
human motion composition and extrapolation tasks in our
public code repository3. Note that a combination consists
of a list of textual descriptions and their associated dura-
tions. The 32 textual descriptions used for the extrapolation
experiments from Sec. 4 are enumerated in Tab. A.

Babel HumanML3D

walk forward a person walks in a curved path to the left.
swim movement a person stands still and does not move.
stretch arms a person walks straight forward.
walk a person does jumping jacks.
stand a person start to dance with legs.
step backwards person walking in an s shape.
t-pose a person walks to his right.
throw the ball a person slowly walked forward.
run the person is standing still doing body

stretches.
circle right arm backwards the person is dancing the waltz.
wave right the person is clapping.
ginga dance walking side to side.
forward kick a person stayed on the place.
look around person is jogging in place.
steps to the right a person walks backward for 3 steps.
side steps person is running in a circle.
hop forward the person is waving hi.
dance with arms a person walks in a circular path.
jog swinging arms up and down.
walk slowly a man walks counterclockwise in a circle.
jump jacks series the person is walking towards the left.
run in half a circle the person is walking on the treadmill.
walk a few steps ahead the man is moving his left arm.
move head up and down the person is doing basketball signals.
rotate right ankle a person remained sitting down.
play guitar a person hits his drums.
jump forward person is doing a dance.
move both hands around chest a person takes some steps forward.
swing back and forth a person slowly walks forward five steps.
wave a person jumps in place.
shake it this person appears to be painting.
walk in circle a person wiping a surface with something.

Table A. Extrapolated motions for Babel and HumanML3D.

C. More experimental results
C.1. Fine-grained comparison

Tab. B shows the comparison of FlowMDM with the state
of the art in both in-distribution and out-of-distribution sce-
narios. We observe that, while all methods maintain similar
performance in both scenarios for the subsequence gener-
ation, they generate less realistic and more abrupt transi-
tions in the out-of-distribution case. FlowMDM performs

3https://barquerogerman.github.io/FlowMDM/

the best at most metrics in both scenarios, with an important
gap with respect to the previous state of the art regarding
transition smoothness. Tab. C shows the scenario-wise re-
sults for HumanML3D, where FlowMDM also performs the
best in most metrics and scenarios. Interestingly, MultiDif-
fusion is, after ours, the most stable method in terms of tran-
sition smoothness across scenarios (PJ and AUJ), whereas
DiffCollage and DoubleTake show severe transition degen-
eration in combinations of long sequences. Such degenera-
tion is mostly due to their methodological need to pad the
motion sequence during sampling. When dealing with long
sequences, sequences might be extended beyond the max-
imum sequence length at training time. Therefore, given
that the APE does not extrapolate well, the generation in
the padded motion, or transition, tends to degenerate. Our
method naturally avoids this limitation.

C.2. On the attention horizon

In Tabs. D and E, we show the effect of the attention hori-
zon when using RPE for either a purely relative inference
schedule, or our proposed BPE inference schedule. We ob-
serve how increasing it too much (H=200) makes the net-
work perform worse at transition generation in both datasets
(FID and AUJ), and also in subsequence generation for Hu-
manML3D (R-prec and MM-Dist). Conversely, when de-
creasing it too much (H=50), the capacity to model long-
range dynamics becomes limited, thus reducing the accu-
racy of the generated subsequences (R-prec and MM-Dist).
As the performance with H of 100 and 150 is similar in
both datasets, we chose values that are closest to the aver-
age sequence length in each dataset, i.e., 100/150f for Ba-
bel/HumanML3D.

C.3. On the diffusion schedule

The discussion and the BPE design in Sec. 3.2 are moti-
vated by the low-to-high frequencies decomposition during
the denoising stage of diffusion models. However, the de-
noising process depends on how the noise is injected, or
the noise schedule. The linear and the cosine (our choice)
noise schedules are the most common schedules. The lin-
ear schedule destroys the motion very fast, reaching a non-
recognizable state after going through the 75% of the dif-
fusion steps [58]. Instead, the cosine schedule destroys
the motion signal slower and in a more evenly distributed
way. Fig. A shows the performance of FlowMDM during
BPE sampling with both schedules. First, we observe that
FlowMDM benefits from the steadier noise injection of the
cosine schedule, achieving better performance in all realism
and accuracy metrics (R-prec and FID). Second, we iden-
tify a displacement in the accuracy (R-prec) and smooth-
ness (AUJ) curves (see black arrows). Given that with the
linear schedule global dependencies start being recovered
later, more APE steps are needed to achieve the accuracy
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Subsequence Transition
R-prec ↑ FID ↓ Div → MM-Dist ↓ FID ↓ Div → PJ → AUJ ↓

GT 0.715±0.003 0.00±0.00 8.42±0.15 3.36±0.00 0.00±0.00 6.20±0.06 0.02±0.00 0.00±0.00

In-distribution

TEACH B 0.727±0.004 2.26±0.03 8.20±0.12 3.35±0.01 2.77±0.05 6.32±0.07 1.03±0.00 2.20±0.01

TEACH 0.665±0.003 2.09±0.03 8.06±0.09 3.73±0.02 2.78±0.06 6.31±0.07 0.07±0.00 0.42±0.01

DoubleTake* 0.620±0.006 3.04±0.06 7.49±0.07 4.19±0.02 3.04±0.12 6.21±0.06 0.28±0.00 1.01±0.01

DoubleTake 0.682±0.008 1.52±0.03 7.90±0.07 3.67±0.04 3.47±0.08 6.16±0.07 0.17±0.00 0.62±0.01

MultiDiffusion 0.724±0.008 2.00±0.05 8.36±0.10 3.38±0.02 6.33±0.13 5.91±0.06 0.17±0.00 0.65±0.01

DiffCollage 0.690±0.006 1.92±0.07 7.92±0.09 3.67±0.02 4.25±0.15 6.19±0.07 0.19±0.01 0.82±0.02

FlowMDM (Ours) 0.726±0.006 1.36±0.05 8.47±0.10 3.40±0.03 2.26±0.08 6.60±0.08 0.05±0.00 0.11±0.00

Out-of-distribution

TEACH B 0.680±0.006 1.75±0.04 8.15±0.11 3.51±0.01 3.53±0.06 6.04±0.10 1.14±0.01 2.49±0.01

TEACH 0.644±0.004 2.06±0.03 7.94±0.12 3.70±0.01 4.08±0.08 6.00±0.09 0.07±0.00 0.46±0.00

DoubleTake* 0.572±0.007 3.78±0.07 7.53±0.12 4.15±0.02 3.83±0.09 6.12±0.07 0.28±0.00 1.07±0.02

DoubleTake 0.654±0.009 1.65±0.07 8.06±0.08 3.66±0.02 2.98±0.06 6.03±0.07 0.17±0.00 0.66±0.01

MultiDiffusion 0.681±0.009 2.11±0.06 8.35±0.08 3.47±0.03 6.97±0.12 5.67±0.05 0.19±0.00 0.71±0.01

DiffCollage 0.652±0.004 1.60±0.07 7.91±0.09 3.74±0.01 4.65±0.19 6.00±0.09 0.20±0.00 0.86±0.01

FlowMDM (Ours) 0.679±0.004 1.26±0.06 8.16±0.08 3.50±0.03 3.17±0.12 6.44±0.09 0.07±0.00 0.17±0.00

Table B. Scenario-wise comparison in Babel. Symbols ↑, ↓, and → indicate that higher, lower, or values closer to the ground truth (GT)
are better, respectively. Evaluation is run 10 times and ± specifies the 95% confidence intervals.

Subsequence Transition
R-prec ↑ FID ↓ Div → MM-Dist ↓ FID ↓ Div → PJ → AUJ ↓

GT 0.796±0.004 0.00±0.00 9.34±0.08 2.97±0.01 0.00±0.00 9.54±0.15 0.04±0.00 0.07±0.00

Short

DoubleTake* 0.649±0.012 3.03±0.18 9.52±0.11 3.72±0.05 3.56±0.14 8.92±0.14 0.13±0.01 0.79±0.05

DoubleTake 0.704±0.022 4.85±0.20 10.01±0.15 3.25±0.09 4.40±0.24 8.88±0.17 0.09±0.00 0.73±0.02

MultiDiffusion 0.717±0.011 5.49±0.15 10.14±0.17 3.23±0.07 4.66±0.27 8.68±0.08 0.10±0.00 0.92±0.02

DiffCollage 0.705±0.012 4.69±0.18 9.73±0.14 3.30±0.04 4.81±0.32 8.49±0.12 0.15±0.01 1.13±0.10

FlowMDM (Ours) 0.714±0.015 4.75±0.26 9.90±0.20 3.31±0.06 3.17±0.17 9.03±0.14 0.04±0.00 0.59±0.04

Medium

DoubleTake* 0.644±0.009 2.18±0.08 9.18±0.12 3.72±0.04 3.34±0.30 8.73±0.12 0.14±0.00 0.70±0.03

DoubleTake 0.642±0.014 2.34±0.05 9.59±0.09 3.79±0.05 5.42±0.30 8.61±0.11 0.12±0.00 0.83±0.02

MultiDiffusion 0.673±0.007 3.22±0.10 9.91±0.07 3.54±0.04 6.24±0.34 8.11±0.12 0.10±0.00 1.14±0.01

DiffCollage 0.661±0.010 2.03±0.07 9.38±0.10 3.60±0.04 4.95±0.27 8.13±0.09 0.14±0.00 0.66±0.05

FlowMDM (Ours) 0.669±0.012 3.18±0.15 9.68±0.08 3.55±0.04 4.18±0.43 8.52±0.07 0.04±0.00 0.86±0.03

Long

DoubleTake* 0.616±0.006 2.51±0.09 8.77±0.08 4.09±0.03 3.38±0.18 8.50±0.11 0.89±0.02 3.52±0.07

DoubleTake 0.605±0.006 4.07±0.13 8.19±0.11 4.18±0.01 8.45±0.33 7.79±0.12 0.81±0.02 3.04±0.07

MultiDiffusion 0.569±0.012 5.02±0.15 8.07±0.07 4.49±0.05 8.56±0.32 7.91±0.10 0.23±0.01 1.16±0.01

DiffCollage 0.557±0.008 5.79±0.13 7.75±0.09 4.61±0.02 9.00±0.36 7.75±0.09 0.38±0.01 5.04±0.14

FlowMDM (Ours) 0.666±0.012 1.93±0.08 8.81±0.09 3.81±0.04 2.85±0.22 8.54±0.11 0.08±0.00 0.45±0.03

All

DoubleTake* 0.655±0.007 0.84±0.04 9.29±0.10 3.92±0.03 1.91±0.12 8.79±0.11 0.51±0.01 2.11±0.05

DoubleTake 0.621±0.006 1.49±0.07 8.91±0.04 4.13±0.02 4.75±0.13 8.39±0.06 0.47±0.01 1.84±0.03

MultiDiffusion 0.632±0.003 1.17±0.04 9.29±0.09 4.05±0.02 4.42±0.16 8.37±0.08 0.17±0.00 1.06±0.01

DiffCollage 0.615±0.007 1.73±0.07 8.73±0.05 4.18±0.04 4.98±0.24 8.09±0.06 0.26±0.00 2.71±0.12

FlowMDM 0.695±0.008 0.30±0.02 9.55±0.08 3.58±0.02 1.49±0.06 8.78±0.11 0.06±0.00 0.50±0.01

Table C. Scenario-wise comparison in HumanML3D.

and smoothness reached with the cosine schedule.

C.4. On the classifier-free guidance

The classifier-free guidance is an important add-on for dif-
fusion sampling that intensifies the conditioning signal, thus
improving the quality and accuracy of the generated sam-
ples [33]. It is implemented by first computing the con-

ditionally denoised motion xc, and the unconditionally de-
noised motion x. Then, the denoised sample is computed
as x + w(xc − x). If w=1, the classifier-free guidance is
deactivated. When generating motion from single textual
descriptions with classifier-free guidance, we keep steer-
ing the denoising toward motions matching better the tex-
tual description. However, when building human motion
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Subsequence Transition
H (frames) Inf. PE R-prec ↑ FID ↓ Div → MM-Dist ↓ FID ↓ Div → PJ → AUJ ↓

GT - 0.715±0.003 0.00±0.00 8.42±0.15 3.36±0.00 0.00±0.00 6.20±0.06 0.02±0.00 0.00±0.00

50 R 0.641±0.004 1.03±0.04 7.99±0.11 3.92±0.03 2.04±0.06 6.30±0.05 0.04±0.00 0.15±0.00

100 R 0.635±0.004 0.85±0.02 8.25±0.12 3.98±0.02 2.14±0.04 6.44±0.09 0.04±0.00 0.15±0.00

150 R 0.641±0.005 0.99±0.04 8.24±0.15 3.88±0.03 2.43±0.06 6.43±0.06 0.04±0.00 0.15±0.00

200 R 0.601±0.005 1.48±0.04 7.85±0.14 4.17±0.02 3.18±0.09 6.16±0.05 0.04±0.00 0.19±0.00

50 B 0.698±0.006 1.07±0.03 8.19±0.11 3.44±0.02 2.34±0.06 6.24±0.07 0.06±0.00 0.13±0.00

100 B 0.702±0.004 0.99±0.04 8.36±0.13 3.45±0.02 2.61±0.06 6.47±0.05 0.06±0.00 0.13±0.00

150 B 0.704±0.004 1.24±0.03 8.34±0.12 3.43±0.02 2.54±0.08 6.40±0.08 0.06±0.00 0.13±0.00

200 B 0.694±0.006 1.13±0.02 8.25±0.13 3.42±0.02 3.31±0.08 6.38±0.09 0.06±0.00 0.14±0.01

Table D. Attention horizon effect in Babel. All models correspond to FlowMDM, trained with BPE. Inf. PE indicates the type of positional
encoding used during sampling: B for BPE, and R for only RPE. Symbols ↑, ↓, and → indicate that higher, lower, or values closer to the
ground truth (GT) are better, respectively. Evaluation is run 10 times and ± specifies the 95% confidence intervals.

Subsequence Transition
H (frames) Inf. PE R-prec ↑ FID ↓ Div → MM-Dist ↓ FID ↓ Div → PJ → AUJ ↓

GT - 0.796±0.004 0.00±0.00 9.34±0.08 2.97±0.01 0.00±0.00 9.54±0.15 0.04±0.00 0.07±0.00

50 R 0.583±0.005 1.08±0.07 9.03±0.15 4.30±0.02 1.88±0.06 8.85±0.10 0.04±0.00 0.70±0.01

100 R 0.591±0.005 1.07±0.03 9.02±0.13 4.29±0.02 1.51±0.08 8.90±0.08 0.04±0.00 0.56±0.01

150 R 0.554±0.007 1.06±0.06 9.02±0.11 4.54±0.02 1.12±0.04 9.00±0.10 0.05±0.00 0.53±0.01

200 R 0.528±0.004 1.37±0.04 8.87±0.07 4.68±0.01 1.72±0.05 8.97±0.09 0.03±0.00 0.97±0.01

50 B 0.671±0.004 0.25±0.01 9.37±0.14 3.66±0.02 1.27±0.04 8.79±0.08 0.06±0.00 0.52±0.01

100 B 0.684±0.003 0.36±0.02 9.55±0.09 3.61±0.02 2.04±0.11 8.59±0.06 0.06±0.00 0.56±0.01

150 B 0.685±0.004 0.29±0.01 9.58±0.12 3.61±0.01 1.38±0.05 8.79±0.09 0.06±0.00 0.51±0.01

200 B 0.658±0.006 0.47±0.03 9.37±0.13 3.77±0.02 2.27±0.07 8.69±0.08 0.06±0.00 0.68±0.01

Table E. Attention horizon effect in HumanML3D. All models correspond to FlowMDM, trained with BPE. Inf. PE indicates the type of
positional encoding used during sampling: B for BPE, and R for only RPE.
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Figure A. Diffusion noise schedules. The cosine noise schedule
destroys the motion signal slower and in a more evenly distributed
way than the linear schedule. As a result, FlowMDM is able to
exploit better the low-to-high frequencies decomposition along the
denoising chain and generate better subsequences and transitions.
The faster motion destruction in the linear schedule translates to
needing more APE steps to reconstruct global dependencies inside
subsequences (black arrows ↔).

compositions with our method, two different conditions co-
exist in the neighborhoods of the transitions. There, the
classifier-free guidance pushes the denoising towards dis-
par directions. As a result, if w is too high, the transi-
tion will become sharper, and if w is too low, subsequences
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Figure B. Classifier-free guidance. In line with prior works, we
also observe an accuracy improvement (R-prec) when increasing
the strength (i.e., weight) of the classifier-free guidance (CFG).
However, above certain values, the performance degrades, espe-
cially in terms of smoothness (AUJ). This is caused by the mis-
alignment of CFG directions on each side of the transition.

might not be accurate enough. Fig. B shows these effects for
FlowMDM. We notice a sweet point around w=1.5/2.5 for
Babel/HumanML3D, where FlowMDM reaches the max-
imum accuracy and quality for subsequences and a good
trade-off for quality and smoothness of transitions.
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Figure C. Qualitative examples (Babel). A-F feature six human motion compositions, and G-H two human motion extrapolations. Ac-
cording to the scenarios defined in Sec. B, A, B, C belong to in-distribution combinations, and D, E, F to out-of-distribution combinations.
Videos of all samples are also included as part of this supplementary material. Solid curves match the trajectories of the global position
(blue) and left/right hands (purple/green). Darker colors indicate instantaneous jerk deviations from the median value, saturating at twice
the jerk’s standard deviation in the dataset (black segments). Abrupt transitions manifest as black segments amidst lighter ones.

D. Qualitative results

Figs. C and D show six human motion compositions (A
to F), and two extrapolations (G and H) for Babel and Hu-
manML3D, respectively. The compositions are subsets of
the evaluation combinations composed of 32 actions, so the

beginning and end of these can contain partial transitions to-
ward other actions. Motion videos are also included as part
of the supplementary material. Note that we can represent
the motions from Babel with SMPL body meshes thanks
to its motion representation including the SMPL parame-
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Figure D. Qualitative examples (HumanML3D). A-F feature six human motion compositions, and G-H two human motion extrapolations.
According to the scenarios defined in Sec. B, A, B, C are samples from the short, medium, and long scenarios, respectively, and D, E, F
from the mixed scenario. Videos of all samples are also included as part of this supplementary material.
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ters [13]. For HumanML3D, we use skeletons, as its mo-
tion representation only includes the 3D coordinates of the
joints.

Discussion. The hands trajectories and the jerk color
indicators in Figs. C and D and the videos highlight that
FlowMDM generates the smoothest transitions between
subsequences. Notably, state-of-the-art methods exhibit fre-
quent smoothness artifacts (black segments) in the bound-
aries of their transitions. We notice that the compositions
produced by TEACH lack realism due to the use of a naive
spherical linear interpolation, disrupting the motion dynam-
ics. This becomes more apparent in extrapolations G and
H of both datasets, where the periodicity of the movement
is clearly compromised. On the other side, DoubleTake,
DiffCollage, and MultiDiffusion share two significant lim-
itations. Firstly, they adhere to a predetermined transition
length, which may not fit all situations. For example, in
Babel-A, the ‘picking’ actions occur very rapidly due to the
insufficient length for generating a natural transition. By
contrast, our approach is able to leverage more transitioning
time from either transition side if needed, without artificial
constraints. Secondly, the denoising process in these meth-
ods only considers a small portion of the neighboring sub-
sequences, leading to poor performance in dynamic motion
extrapolations. For example, in HumanML3D-G, they all
generate erratic jumping jacks. While our method also inde-
pendently generates the low-frequency motion spectrum, it
effectively rectifies inconsistencies in later stages, yielding
realistic and periodic motion. In the case of Babel-H, where
successfully extrapolating the ‘hop forward’ action requires
synchronizing each subsequence with the whole neighbor-
ing motion, our model is the only one able to generate a
smooth, coherent, and realistic extrapolation.

Limitations. However, FlowMDM is not without
its imperfections. We noticed that our method struggles
with very complex descriptions, such as the first one in
HumanML3D-B. Instead of executing the intricate descrip-
tion that includes ‘walk backwards, sit, stand, and walk for-
ward again’, it only walks backwards. Given that the par-
tial execution of actions is also observed in other methods,
we consider it a challenge associated with the broader text-
to-motion task. Indeed, our model could theoretically also
benefit from improved conditioning schemes such as using
better text embeddings. Another acknowledged limitation
of our model, discussed in Sec. 5, is the independent gen-
eration of low-frequency components. In Babel-B, for ex-
ample, a slight mismatch between the sitting and standing
positions is observed. Nonetheless, in contrast to DiffCol-
lage, MultiDiffusion, and DoubleTake which also exhibit
this effect, FlowMDM produces a smoother result.
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