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Abstract

Robust visual pose estimation is at the core of many computer vision afppfis,
being fundamental for Visual SLAM and Visual Odometry problems.ribythe last
decades, many approaches have been proposed to solve thdemprdieing RANSAC
one of the most accepted and used. However, with the arrival of halleages, such
as large driving scenarios for autonomous vehicles, along with the yreprents in the
data gathering frameworks, new issues must be considered. Onesefigsues is the
capability of a technique to deal with very large amounts of data while meetngét-
time constraint. With this purpose in mind, we present a novel techniquledgroblem
of robust camera-pose estimation that is more suitable for dealing with gangunt of
data, which additionally, helps improving the results. The method is basedambina-
tion of a very fast coarse-evaluation function and a robustveraging procedure. Such
scheme leads to high-quality results while taking considerably less time thRiSRB.
Experimental results on the challenging KITTI Vision Benchmark Suitepaogided,
showing the validity of the proposed approach.

1 Introduction

Robust camera-pose estimation is a fundamental stage of ceamputer vision problems,
being specially important for Visual Simultaneous Locatian and Mapping(SLAM and
Visual Odometry YO) systems. Both problems have received a relevant amouttieoiti@an
during the last decades, e.gb][R0][22][ 26]; professing a special dedication to algorithms
capable of dealing with high levels of noise and outliershsas B[ 6].

When camera-pose estimation is applied as a part W6BAM-VOframework, it is
mandatory to consider the real-time constraint and howdtage affects the overall per-
formance of the system. State-of-the-art approaches coynaaldress this problem by
making use of the well-known methodology proposed in RANSA[®r any of its variants
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Figure 1: Results of theO expenments for KITTI sequences 00 (left) and bé (right) tibko
that, although all robust methods lead to similar trajeefrC-Avg and P-Avg remain closer
to the ground truth.

[1][23]. This usually leads to good results, but there are casesichwhe performance of
these algorithms drastically decreases. One of these tasEsplace when the amount of
input information, constraining the affected pair of viewstoo large. This phenomenon
is present in modern frameworks, such &€|[9], which are able to generate thousands of
correspondences between pairs of monocular images or theitws of a moving stereo-
rig, at two time instants, while performing in real-time irsandard CPU. RANSAC-like
methods are affected by this “excess” of information, whaidpces an increment on the
time dedicated to evaluate and rank the generated modetsdén to avoid this drawback,
real-time implementations opt to use just a part of the albgl data, therefore discarding a
great amount of information and penalizing the accurachefresultant models.

In this paper, we propose a novel alternative to the problénolwust pose estimation
with application toVO systems in large driving scenarios. Our approach is degitmdeal
with large amounts of data in a very efficient way and we shat sluch a property helps
improving estimation results. The algorithm is based on mhioation of coarse model
evaluation along with a posterior stage of robfjsaveraging. We show how our technique
leads to similar or better results than those produced by 8AG| while performing in less
time. Additionally, our experiments suggest that this sbdtrategy is very suitable for large
urban environments, where rich textures are easily foundraiers ratio is high. In all our
tests we use the KITTI Vision Benchmark Suite, a novel berafipresenting challenging
urban scenariodfl]. Additionally, we provide an efficient implementation afreapproach.

The remainder of this paper is structured as follows. SeQicontextualizes our ap-
proach according with the literature. Then, in sect®rthe method and its constitutive
stages are described. Sectibmtroduces a modified version of the model generation stage
that leads to better results. We validate these concemgghout real data tests in secti&n
Finally, we summarize our findings in sectiéngiving an advance of our future work.

1code available atit t ps: // gi t hub. conf ger ranRos/ | lavgvo
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2 Related Work

Robust pose estimation techniques were originally ingpbg the extensive work done
within the field of statistics]4]. Techniques such as the Huber robust M-estimai8} §re
still widely used for this purpose, giving rise ¥SLAM-VOframeworks like the proposed
by Comportet al. [4]. The principal advantage of M-estimators is its algoritbsimplicity,
which in practice means a good trade-off between robusemegsomputational efficiency.
However, a negative aspect of these tools is that, by defigy,have to be applied to each
individual association independently. This prevents wipgldata reduction techniquesd],
which have proven to be very attractive for achieving r@aktcapabilities.

On the other hand, a large part of the literature about romethods for motion esti-
mation is centred on consensus techniques such as RANBAQ\fter more than thirty
years, RANSAC is still one of the most outstanding methodbrasides at the core of many
state-of-the-art/ SLAM-VOframeworks R6][ 27], since it produces good results and is sim-
ple. Many variations of the original scheme have been pregas order to mitigate known
drawbacks ][23]. It is out of the scope of this paper to review the advantagfesuch
techniques, but we must highlight two remarkable variatittvat have inspired this work.

The first of these methods is Progressive Sample ConsenR@SAC), proposed by
Chum and Matas inZ. The idea of PROSAC is to benefit from the information getexta
by visual matching procedures, since for each matched ketgoid is possible to assign a
score that act as a vague prior of the association qualitis &ttra information is used to
sort the set of matches and to impose an order in the modeftaj@restep. In this way,
matches with good scores are more likely to be drawn eavlieich usually improves the
creation of high quality models with less effort. In both eggches, the evaluation time for
each model is still dominated by the size of the input datackwis an important drawback
in the context olVSLAM-VQapplications.

To solve this issue, Nistér proposed Preemptive RANSZT, | technique that follows
a breadth-first scheme to evaluate hypotheses with increaneata. This leads to a fast
rejection of some models, what reduces the overall comipuatatn the presence of large
and “clean” amounts of data, the possible configurationsreéfptive RANSAC can lead
to two undesirable situations: (i) due to the large amourgazfd matches too many good
models are kept across the hierarchy, producing an ovedb#uke evaluation stage; (i) a
restrictive breadth-first search is used and a large pahneafiformation is never considered.

A radically different strategy was proposed by Govindd][12], who explored the idea
of combining multiple camera poses (hypotheses) in a cobhé&xshion by using averaging
techniques on a manifold. The algorithm proceeds by gengra¢veral poses from different
subsets of data and then through averaging it tries to cesabust final pose. These works
laid the foundations of pose averaging and inspired sevexaltechniques. However, the
robustness of these averaging methods might be compromvisew a fraction of the poses
are severely affected by noise. In order to make pose averagore robust, Hartlegt
al. [16][17] proposed the use of pose averaging under/fheorm, also known as the geo-
metric median. That change greatly improves the robusufeks averaging, leading to very
accurate results. This idea is validated vith(3) models for Essential matrix estimation.

The method here proposed is inspired Bf 12][16][21], but presents clear differences
with them. First of all, we focus ofy-averaging orSEE(3), being our main target ster&D
for large urban environments, a domain in which these tegles have not been previously
tested. Furthermore, our approach can produce robustsdsuh large amounts of data in
less than 15 ms, which makes it much faster than RANSAC.
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Figure 2: Main pipeline stages of the presented technique.

3 Robust Pose Estimation vigi-averaging

We have focused the development of our method on producst@fal robust camera-pose
estimation forVSLAM-VOapplications. It is assumed that the input sensor is a fali ¢
brated stereo-rig and that pixel correspondences betweefotr views are provided (for
instance, by usingl]). We model motion as being rigid transformations in the }ace,
i.e., as elements of the groGfE(3).

The algorithm here explained follows a scheme of model geiter and evaluation, in
the same line as RANSAC. However, the kind of evaluation psepl differs from the former.
RANSAC makes use of a robust evaluation functiyers that counts the number of inliers
of a given modeB. The model with greatest number of inlieds= argmax{Fniiers( & )}, 1
is conserved as the best candidate. This strategy can beutatiopally expensive for real-
time purposes when the amount of correspondences is vem, larg., of the order of thou-
sands, a number that is becoming common in modern acquigiimeworks (e.g. d[10)).

Our proposal consists in changing the evaluation stagettydacing a new cost function
that can be used to score models in constant time, indepgyndérhe data size. We call
this kind of functionsk;oarse Since it performs a very quick evaluation but at the price of
producing less reliable assessments. Actually, the owtipthis function cannot be directly
used to select the best candidate, but it can be used to sesediset of the model C
{9.}{\‘:l containing a very high proportion of “good” models (thoséhaa similar amount
of inliers asf). Then, the models in the subsgtare combined in a robust way by using
¢1-averaging orSE(3). The idea is that both coarse evaluation and model averaging
be performed extremely quickly, giving rise to a fast andusitestimation technique. This
strategy is summarized in the diagram of Fig.

3.1 Model generation

This initial stage consists in generatiNgmodels@ € SE(3) from the available data” =
{0, ps Xe.py X1 0o Xr.c) VIR 1. Herexj k = (uj,Vjx) stands for pixel coordinates, the subscript
j =A{l,r} describes the pixel camera source (l)eft or (r)ight and tissriptk = { p, c} spec-
ifies if the pixel comes from the (p)revious or the (c)urreainfie. Each model is generated
by randomly drawing a minimal number of matchds< D to constraint the model; in our
case, since we work ifiE(3), M = 3 matches. Given that the stereo-rig is fully calibrated

the method starts by triangulating all the 3D poiﬁléig}al such that:

10 0 —cy] [wp1®
01 0 — vi, [

M3 loo 0 fcv]lé;] =><|f'3 (1)
001B 0 1

Hereu, p andv; ,, are the components of the pixel in the left previous viewae U p — Ur p

is its disparity with respect to the left camera. It is assdthat both cameras share the same
focal lengthf and the principal poin{cy,cy), having no skew term.B is the stereo-rig
baseline andll; : P' C Ri+1 — R is a standard projection function. Afterwards, each model
is generated by optimizing the cost function shown in Eqvhich represents an algebraical
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cost, chosen to produce a behaviour similar to the repiojerror of 3D points in the
current views. Her& () andxt) are homogeneous 3D and 2D points, respectively, while |
is the standard 8 3 matrix of intrinsic parameters aréistands for the vectdB, 0,0]" .

Cly) = ZHK M3 (expr(L[J)X| g) xR +HK (r|3 (exn(wm“g) _|§> < %0 ‘Z )

The optimization is carried out on tf&¥(3) manifold by considering a minimal para-
metrizationy along with a first order retractioexp,. Such a retraction is a first order ap-
proximation of the actual exponential map, which maps frbenltie algebra to the manifold
to ensure all the constraints of the group are met. Furthexntbe retraction is simpler to
compute than the exponential map and there is no loss of@ngun this case the retraction
used is the Cardan map (E3).

cosy sinyiz—sinyy sinyp sinys cosy cosys+sinyy sing, singz —sinyy cosys Ys (3)
siny sins+cosyy sinyp cosys sinyq cosyz—cosy singo singz  cosyy cosyr  Yg
0 0 0 1

Ccosy, cosys — coSl, cosyi —sing, Uy
anio |

The cost function in EQR is optimized with some iterations of the Levenberg—Marduar
algorithm to produce the modél = [g H = exp (argmin, C(y)), whereR is a rotation

matrix andT a translation vector. In a typical configuration we genebetieveerN = 100
andN = 2000 models.

3.2 Coarse Evaluation

Each of the models is evaluated with a so-called coarseitimBEfoarse This function has
been designed to be extremely fast, an objective that iseetiithanks to the use of a
Reduced Measurement MatfRMM) [15][25]. RMMs are algebraical reductions of the
input dataX’ that create a compact equivaldMtunder the/,-norm. The advantage of this
reduction is thaM can be computed very efficiently even for very large coltatdiof data
and this has to be done just once, at the beginning of the gso&&.4 shows the structure
of Feoarse@nd how to formM for the cost function defined in Eg:
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here,8 = [stack(R),stack(T),1]", i.e., a stacked version & with an homogeneous com-

ponent. The key terms of this expression are thel3 matriceSNl(i) andV\/r(i>, which have
the following structure:

o o 0G @ im',l: o @v) o
W =1 -0 (O (5 c)>q'; -t 0 wew a6
IOV UL OO (M OT 0 gy e — gu®
Vi uxh (e )xI v, u’ (e —ou’) B =l

ForV\/r(i>, a=Bfandg = —vaﬁi), while both are zero fd#\/|<i). As a simplification of the

notationugi) andvgi) are used for denoting the pixel components ofithie correspondence
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in the current left or right view. Finally, eadW; is the stacking of all the/\/j(') blocks,
forming up a ® x 13 matrix. The resultar¥ is a 13x 13 matrix that can be considered as a
“condensed”»-norm equivalent of EqR. The main drawback of this compact version is that
outliers cannot be easily detected any longer, and thezefbe residuaty = Feoarsd 6) =
é.TMé. should not be considered as an indicator of the goodness oflalm

After a thorough analysis of real data sequences, we olibénat models with a high
number of inliers (the expected good models) produce lowluess forFeoarse €vEN when
M contains outliers. On the other hand, models corresponlitiga low number of inliers
present random values f6toarse producing low residuals just occasionally. Such a phe-
nomenon is shown in Fig (a). This property is strong enough to allow for an ordering of
{61N . It turns out that, by selecting th¥ models with lowest residual —the selection
criterion used for this approach— the number of “good” medehds to be much higher
than the number of “bad” models (those with low proportiohgnbers). This is shown in
Fig. 3 (b), for which we selectetlly = 500 models out oN = 1000 based 0R¢arseand cre-
ated a histogram with the frequency of models for each giveoust of inliers. It is evident
from the histogram that the distribution is skewed to thatr{ge., models with high ratio of
inliers). As we discuss in next section, such a distributian be exploited by a method of
robust averaging as long as the proportion of good modeys stiaove the 50%. Later, we
will show how the correct ordering of matches helps to fulfils condition.

3.3 Robust Averaging and Pose Refinement

In this stage a new high-quality model is generated from iifigrination encoded % C
{G.}i'\‘:l. Instead of trying to pick up the best candidate fr&gwe opted for combining
them all with a pose-averaging methd®][ 17]. The main reason is that this operation can
be done extremely quick in modern computers, taking banedyroillisecond for an amount
of 500 models. However, classicgl-averaging methods are not robust, leading to wrong
results wherf is partially corrupted. To avoid this drawback we make use ofbust/;-
averaging method proposed by Hartltyal. [16]. ¢;-averaging uses the multi-dimensional
equivalent of the median operator and can stand up to a 50%rfgtion inS,, something
that in practice is achieved due to the mentioned phenomenon

Each of the models i represents a rigid transformation in 3D, i.@.< SE(3). There-
fore, the final averaged modél must be an element E(3) as well. To enforce this
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constraint the method makes use of the Lie group properfiéf@3) and its associated
Lie algebrase(3). In this way, the averaging is performed by projecting eadueh6 to
the tangent space of the current estimaté af se(3), through the logarithm map se3Log.
Such a space is isomorphic wiitf and in consequence 6-vectapscan be used as a local
representation. Then, the Weiszfeld algorithm is applieiteratively estimate the geodesic
median of the 6-vectors, mapping the result baclSE{3) through the exponential map
se3Exp. The authors idf] propose to use retractions to approximate both exporientth
logarithm maps, but in this stage we make use of the actuasnepdefined in7]. For
the sake of completeness a summary of the procedure is showddorithm 1, although
interested readers are referred16][ 17] for further details.

The initialization of this method can be done with a randorasguor by using a non-
robust/,-averaging method, as suggested by Hartlesil. [16]. SinceS, contains just a few
wrong elements, the procedure keeps in the domain of therexfpg maps. As an optional
step after the averaging, the final modélis refined by computing the inliers set éfas in
RANSAC to perform a final optimization with the cost functidefined in Eq2.

Algorithm 1 ¢1-averaging with the Weiszfeld algorithm

6 « Initial guess {»-averaging 12])
repeat A
Wi + se3Logf 8 1), fori=1,...,Ng
S/l
O e,
6 < se3Expd) 6
until Héuéz <&
return 6

4 Progressive Sampling Scheme

In previous sections we stated that the us&gfsealong with/;-averaging lead to robust
model estimations in the presence of outliers. Itis alsimd that this is true as long as the
ratio of good models 15 remains above the 50%. According to our experience, when tt
target problem i¥ SLAM—V Oin urban environments (outdoors), the data acquired bg-stat
of-the-art frameworks tends to be quite good. This fact isrssequence of the rich textures
present in urban scenarios and it favours the correct betaef estimation methods.

However, there are also situations where the quality of théches is very poor, e.g.,
highways scenes. For these cases the creation of a suitd§lerequires to generate a very
high number of models —usually up to tens of thousands. Tloislpm stems from the need
of exploring a large part of the correspondences until blétenodels are generated. If the
process is stopped too early, the method would end up saddctiear-random models and
the final one would be of no value. Therefore, in difficult see(scenes with a low ratio of
inliers T < 40%), the model generation stage becomes the bottle-nemk @jpproach.

We found in our experiments that this issue can be greatlyoediby substituting the ran-
dom draw of matches for a priority scheme that favours theggion of better models. This
is the principle proposed in PROSAC and consists in usingrmétion about the quality of
the correspondences as a prior of their goodness. For visatghing this information is al-
ready computed and have proven to be a good prior (see ségtibhe changes in the model
generation scheme required to reflect this policy are sttdayward. Firstly, the correspon-
dences inY’ are sorted according to their scores, giving ris&e= {Xs1,...,Xsp}. Then,
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Figure 4: Mean error (box) and std (line) for the tested caméijons. Rotation errors (left)
and translation errors (right), considerirg300 matches in each pair of frames (top) and
2000 matches (bottom).

the three matches for generating theh modelxs" = {Xsky s Xsky, Xsks } have to be drawn
from an uniform distribution with logarithmic increasing@imdaries, i.e.{kl,kz,kg}(h) ~
U(0,c log(c h)), with c =4 in our tests. This forces the drawing method to start selgct
more candidates from the top of the list (i.e., best scomesl) the boundaries are expanded.
We will refer to this strategy as the progressive policy,anttast with the coarse policy.

5 Experimental Results

Here we evaluate the behaviour of the presented method with fiolices; the standard
Coarse-averaging (C-Avg) and the Progressive-averadingv() variation. For this pur-
pose, we use the KITTI Vision Benchmark Suite, which inckidballenging sequences of
driving scenarios (urban and highways). All the experimemére carried out in an Intel
i7-3820 PC at 3.6 GHz, with a single thread. We start by tgdtie influence of the most
relevant parameters of our method; i.e., the number of g¢ée@models, the number of
models used for averaging and the volume of input data. Tuateathese parameters we
defined ten configurations, listed in Talle Additionally, we created two different sets of
associations for the KITTI sequence 01, with an average atafB00 and 2000 matches
per frame, respectively. The results of this experimensamvn in Fig.4 according to the
mean error and the standard deviation of each configurakommr measurements are split
up into rotation and translation errors for a better un@eing of the results. The exper-
iment shows that using more data increases the quality afehdts notably, a known fact
also studied inZg]. It can also be observed that P-Avg configurations are yshatter than
their counterparts C-Avg.

Table 1: Parameters for the reference configurations
Configurations #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

# of generated models 100 | 100 | 200 | 200 | 500 | 500 | 1000 | 1000 | 2000 | 2000
# of averaged models 25 50 50 | 100 | 125 | 250 | 250 500 500 | 1000

Our second experiment measures the quality of the modedselotfrom the/1-averaging
process. For that we compare the number of inliers of our msauith respect to the inliers
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Figure 6: Time diagram comparing the different stages ofroaches under evaluation.

supporting RANSAC best model (RANSAC is limited to 100 hypexes for real-time pur-
poses). This test is carried out with configurations C-Avga#él P-Avg #5, as they offer a
good trade-off between efficiency and accuracy. Tests aferpged in the KITTI sequences
00-03. The results are depicted in Figas violin charts. It can be observed that the propor
tion of inliers in our models is usually the same as the on@énRANSAC model. Results
for sequence 01 tend to be worse due to the special conddfadhe scene— a highway with
repetitive textures. Notice also that in some situationsneodels present more inliers than
the RANSAC model, which is due to the “extra” local optiminat stage naturally inherent
to the averaging process.

The third experiment presents a comparison between th@gedpapproach, RANSAC
and a least-squares unrobustified version of EqThe test consists in performingO for
the KITTI sequences 00 and 02 with an average amount of 2008spmndences per pair of
frames. The configurations tested are C-Avg #6 and P-Avg #BeWRANSAC is configured
to generate and evaluate just up to 100 hypotheses in ordesdbdthe real-time constraint.
The kind of error considered here is at the level of individoeses, in other words, we
measure the error for each pose of the vehicle with respetttet@round truth trajectory
and provide the mean and the standard deviation for theeesgijuence. Fid. shows the
trajectory estimation for all the methods along with theugrd truth. Both, C-Avg and P-
Avg, reach the same level of accuracy as RANSAC. In sequeBdbedaverage error per
pose of all the robust method is around 4 cm for the transiatial 007 deg for the rotation.
Similar values are obtained for the sequence 02. It is inapbtb notice that, although the
results are very similar, the averaging strategy takesiderably less time. Fig presents a
time summary of the three robust methods for each of thedvagit stages. The average time
consumed for C-Avg and P-Avg is half of the required by RANSAGe coarse evaluation
only takes 2 ms to score 500 models and#haveraging is performed in less than 1 ms for
250 models. The triangulation of the points and the gerwraif M; andM, takes 2 ms.
The common stage of final refinement with the entire set oéiisltakes an average of 4 ms
for all the techniques. Additionally, some preliminary exjmnents have been carried out to
compare our approach with PROSAC. At first glance it seem$PROSAC achieves slightly
more accurate results than RANSAC, as observed with C-AdgRaAvg, but maintaining
similar execution times. Further analysis is still reqdite clarify this issue.
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6 Conclusion and Future Work

We have presented a novel technique for the problem of ralausera-pose estimation with
application toVO-VSLAMframeworks in large driving scenarios. The approach isdase
on the combination of a very fast coarse-evaluation funcéind a robust:-averaging pro-
cedure. This scheme is more suitable for dealing with largeumt of data, which as we
showed, helps producing very accurate results. Our expetsrin real driving scenarios
showed that the proposed approach produces same qualégufs as RANSAC while tak-
ing considerably less time.

As future work, we consider interesting to investigate the af this kind of approaches
in combination with structure-less global optimizationthegls such aslp][24], which can
benefit from our fast camera-pose estimation as an iniéitidin stage. Furthermore, it seems
that a large amount of the computation carried out by our otettan be directly reused by
these techniques, hopefully leading to very efficient sohg.
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