toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Arash Akbarinia; C. Alejandro Parraga edit  openurl
  Title Dynamically Adjusted Surround Contrast Enhances Boundary Detection, European Conference on Visual Perception Type Conference Article
  Year 2016 Publication European Conference on Visual Perception Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Barcelona; Spain; August 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ECVP  
  Notes NEUROBIT Approved no  
  Call Number Admin @ si @ AkP2016b Serial 2900  
Permanent link to this record
 

 
Author (up) Arnau Baro; Pau Riba; Alicia Fornes edit   pdf
doi  openurl
  Title Towards the recognition of compound music notes in handwritten music scores Type Conference Article
  Year 2016 Publication 15th international conference on Frontiers in Handwriting Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract The recognition of handwritten music scores still remains an open problem. The existing approaches can only deal with very simple handwritten scores mainly because of the variability in the handwriting style and the variability in the composition of groups of music notes (i.e. compound music notes). In this work we focus on this second problem and propose a method based on perceptual grouping for the recognition of compound music notes. Our method has been tested using several handwritten music scores of the CVC-MUSCIMA database and compared with a commercial Optical Music Recognition (OMR) software. Given that our method is learning-free, the obtained results are promising.  
  Address Shenzhen; China; October 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2167-6445 ISBN Medium  
  Area Expedition Conference ICFHR  
  Notes DAG; 600.097 Approved no  
  Call Number Admin @ si @ BRF2016 Serial 2903  
Permanent link to this record
 

 
Author (up) Aura Hernandez-Sabate; Lluis Albarracin; Daniel Calvo; Nuria Gorgorio edit   pdf
openurl 
  Title EyeMath: Identifying Mathematics Problem Solving Processes in a RTS Video Game Type Conference Article
  Year 2016 Publication 5th International Conference Games and Learning Alliance Abbreviated Journal  
  Volume 10056 Issue Pages 50-59  
  Keywords Simulation environment; Automated Driving; Driver-Vehicle interaction  
  Abstract Photorealistic virtual environments are crucial for developing and testing automated driving systems in a safe way during trials. As commercially available simulators are expensive and bulky, this paper presents a low-cost, extendable, and easy-to-use (LEE) virtual environment with the aim to highlight its utility for level 3 driving automation. In particular, an experiment is performed using the presented simulator to explore the influence of different variables regarding control transfer of the car after the system was driving autonomously in a highway scenario. The results show that the speed of the car at the time when the system needs to transfer the control to the human driver is critical.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference GALA  
  Notes ADAS;IAM; Approved no  
  Call Number HAC2016 Serial 2864  
Permanent link to this record
 

 
Author (up) Azadeh S. Mozafari; David Vazquez; Mansour Jamzad; Antonio Lopez edit   pdf
openurl 
  Title Node-Adapt, Path-Adapt and Tree-Adapt:Model-Transfer Domain Adaptation for Random Forest Type Miscellaneous
  Year 2016 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords Domain Adaptation; Pedestrian detection; Random Forest  
  Abstract Random Forest (RF) is a successful paradigm for learning classifiers due to its ability to learn from large feature spaces and seamlessly integrate multi-class classification, as well as the achieved accuracy and processing efficiency. However, as many other classifiers, RF requires domain adaptation (DA) provided that there is a mismatch between the training (source) and testing (target) domains which provokes classification degradation. Consequently, different RF-DA methods have been proposed, which not only require target-domain samples but revisiting the source-domain ones, too. As novelty, we propose three inherently different methods (Node-Adapt, Path-Adapt and Tree-Adapt) that only require the learned source-domain RF and a relatively few target-domain samples for DA, i.e. source-domain samples do not need to be available. To assess the performance of our proposals we focus on image-based object detection, using the pedestrian detection problem as challenging proof-of-concept. Moreover, we use the RF with expert nodes because it is a competitive patch-based pedestrian model. We test our Node-, Path- and Tree-Adapt methods in standard benchmarks, showing that DA is largely achieved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ MVJ2016 Serial 2868  
Permanent link to this record
 

 
Author (up) Baiyu Chen; Sergio Escalera; Isabelle Guyon; Victor Ponce; N. Shah; Marc Oliu edit   pdf
openurl 
  Title Overcoming Calibration Problems in Pattern Labeling with Pairwise Ratings: Application to Personality Traits Type Conference Article
  Year 2016 Publication 14th European Conference on Computer Vision Workshops Abbreviated Journal  
  Volume Issue Pages  
  Keywords Calibration of labels; Label bias; Ordinal labeling; Variance Models; Bradley-Terry-Luce model; Continuous labels; Regression; Personality traits; Crowd-sourced labels  
  Abstract We address the problem of calibration of workers whose task is to label patterns with continuous variables, which arises for instance in labeling images of videos of humans with continuous traits. Worker bias is particularly dicult to evaluate and correct when many workers contribute just a few labels, a situation arising typically when labeling is crowd-sourced. In the scenario of labeling short videos of people facing a camera with personality traits, we evaluate the feasibility of the pairwise ranking method to alleviate bias problems. Workers are exposed to pairs of videos at a time and must order by preference. The variable levels are reconstructed by fitting a Bradley-Terry-Luce model with maximum likelihood. This method may at first sight, seem prohibitively expensive because for N videos, p = N (N-1)/2 pairs must be potentially processed by workers rather that N videos. However, by performing extensive simulations, we determine an empirical law for the scaling of the number of pairs needed as a function of the number of videos in order to achieve a given accuracy of score reconstruction and show that the pairwise method is a ordable. We apply the method to the labeling of a large scale dataset of 10,000 videos used in the ChaLearn Apparent Personality Trait challenge.  
  Address Amsterdam; The Netherlands; October 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ECCVW  
  Notes HuPBA;MILAB; Approved no  
  Call Number Admin @ si @ CEG2016 Serial 2829  
Permanent link to this record
 

 
Author (up) C. Alejandro Parraga; Arash Akbarinia edit   pdf
doi  openurl
  Title Colour Constancy as a Product of Dynamic Centre-Surround Adaptation Type Conference Article
  Year 2016 Publication 16th Annual meeting in Vision Sciences Society Abbreviated Journal  
  Volume 16 Issue 12 Pages  
  Keywords  
  Abstract Colour constancy refers to the human visual system's ability to preserve the perceived colour of objects despite changes in the illumination. Its exact mechanisms are unknown, although a number of systems ranging from retinal to cortical and memory are thought to play important roles. The strength of the perceptual shift necessary to preserve these colours is usually estimated by the vectorial distances from an ideal match (or canonical illuminant). In this work we explore how much of the colour constancy phenomenon could be explained by well-known physiological properties of V1 and V2 neurons whose receptive fields (RF) vary according to the contrast and orientation of surround stimuli. Indeed, it has been shown that both RF size and the normalization occurring between centre and surround in cortical neurons depend on the local properties of surrounding stimuli. Our stating point is the construction of a computational model which includes this dynamical centre-surround adaptation by means of two overlapping asymmetric Gaussian kernels whose variances are adjusted to the contrast of surrounding pixels to represent the changes in RF size of cortical neurons and the weights of their respective contributions are altered according to differences in centre-surround contrast and orientation. The final output of the model is obtained after convolving an image with this dynamical operator and an estimation of the illuminant is obtained by considering the contrast of the far surround. We tested our algorithm on naturalistic stimuli from several benchmark datasets. Our results show that although our model does not require any training, its performance against the state-of-the-art is highly competitive, even outperforming learning-based algorithms in some cases. Indeed, these results are very encouraging if we consider that they were obtained with the same parameters for all datasets (i.e. just like the human visual system operates).  
  Address Florida; USA; May 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference VSS  
  Notes NEUROBIT Approved no  
  Call Number Admin @ si @ PaA2016b Serial 2901  
Permanent link to this record
 

 
Author (up) C. Alejandro Parraga; Arash Akbarinia edit   pdf
doi  openurl
  Title NICE: A Computational Solution to Close the Gap from Colour Perception to Colour Categorization Type Journal Article
  Year 2016 Publication PLoS One Abbreviated Journal Plos  
  Volume 11 Issue 3 Pages e0149538  
  Keywords  
  Abstract The segmentation of visible electromagnetic radiation into chromatic categories by the human visual system has been extensively studied from a perceptual point of view, resulting in several colour appearance models. However, there is currently a void when it comes to relate these results to the physiological mechanisms that are known to shape the pre-cortical and cortical visual pathway. This work intends to begin to fill this void by proposing a new physiologically plausible model of colour categorization based on Neural Isoresponsive Colour Ellipsoids (NICE) in the cone-contrast space defined by the main directions of the visual signals entering the visual cortex. The model was adjusted to fit psychophysical measures that concentrate on the categorical boundaries and are consistent with the ellipsoidal isoresponse surfaces of visual cortical neurons. By revealing the shape of such categorical colour regions, our measures allow for a more precise and parsimonious description, connecting well-known early visual processing mechanisms to the less understood phenomenon of colour categorization. To test the feasibility of our method we applied it to exemplary images and a popular ground-truth chart obtaining labelling results that are better than those of current state-of-the-art algorithms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes NEUROBIT; 600.068 Approved no  
  Call Number Admin @ si @ PaA2016a Serial 2747  
Permanent link to this record
 

 
Author (up) C. Butakoff; Simone Balocco; F.M. Sukno; C. Hoogendoorn; C. Tobon-Gomez; G. Avegliano; A.F. Frangi edit   pdf
doi  openurl
  Title Left-ventricular Epi- and Endocardium Extraction from 3D Ultrasound Images Using an Automatically Constructed 3D ASM Type Journal Article
  Year 2016 Publication Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization Abbreviated Journal CMBBE  
  Volume 4 Issue 5 Pages 265-280  
  Keywords ASM; cardiac segmentation; statistical model; shape model; 3D ultrasound; cardiac segmentation  
  Abstract In this paper, we propose an automatic method for constructing an active shape model (ASM) to segment the complete cardiac left ventricle in 3D ultrasound (3DUS) images, which avoids costly manual landmarking. The automatic construction of the ASM has already been addressed in the literature; however, the direct application of these methods to 3DUS is hampered by a high level of noise and artefacts. Therefore, we propose to construct the ASM by fusing the multidetector computed tomography data, to learn the shape, with the artificially generated 3DUS, in order to learn the neighbourhood of the boundaries. Our artificial images were generated by two approaches: a faster one that does not take into account the geometry of the transducer, and a more comprehensive one, implemented in Field II toolbox. The segmentation accuracy of our ASM was evaluated on 20 patients with left-ventricular asynchrony, demonstrating plausibility of the approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-1163 ISBN Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number Admin @ si @ BBS2016 Serial 2449  
Permanent link to this record
 

 
Author (up) Carles Sanchez; Debora Gil; Jorge Bernal; F. Javier Sanchez; Marta Diez-Ferrer; Antoni Rosell edit   pdf
openurl 
  Title Navigation Path Retrieval from Videobronchoscopy using Bronchial Branches Type Conference Article
  Year 2016 Publication 19th International Conference on Medical Image Computing and Computer Assisted Intervention Workshops Abbreviated Journal  
  Volume 9401 Issue Pages 62-70  
  Keywords Bronchoscopy navigation; Lumen center; Brochial branches; Navigation path; Videobronchoscopy  
  Abstract Bronchoscopy biopsy can be used to diagnose lung cancer without risking complications of other interventions like transthoracic needle aspiration. During bronchoscopy, the clinician has to navigate through the bronchial tree to the target lesion. A main drawback is the difficulty to check whether the exploration is following the correct path. The usual guidance using fluoroscopy implies repeated radiation of the clinician, while alternative systems (like electromagnetic navigation) require specific equipment that increases intervention costs. We propose to compute the navigated path using anatomical landmarks extracted from the sole analysis of videobronchoscopy images. Such landmarks allow matching the current exploration to the path previously planned on a CT to indicate clinician whether the planning is being correctly followed or not. We present a feasibility study of our landmark based CT-video matching using bronchoscopic videos simulated on a virtual bronchoscopy interactive interface.  
  Address Quebec; Canada; September 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MICCAIW  
  Notes IAM; MV; 600.060; 600.075 Approved no  
  Call Number Admin @ si @ SGB2016 Serial 2885  
Permanent link to this record
 

 
Author (up) Carles Sanchez; Debora Gil; T. Gache; N. Koufos; Marta Diez-Ferrer; Antoni Rosell edit   pdf
openurl 
  Title SENSA: a System for Endoscopic Stenosis Assessment Type Conference Article
  Year 2016 Publication 28th Conference of the international Society for Medical Innovation and Technology Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Documenting the severity of a static or dynamic Central Airway Obstruction (CAO) is crucial to establish proper diagnosis and treatment, predict possible treatment effects and better follow-up the patients. The subjective visual evaluation of a stenosis during video-bronchoscopy still remains the most common way to assess a CAO in spite of a consensus among experts for a need to standardize all calculations [1].
The Computer Vision Center in cooperation with the «Hospital de Bellvitge», has developed a System for Endoscopic Stenosis Assessment (SENSA), which computes CAO directly by analyzing standard bronchoscopic data without the need of using other imaging tecnologies.
 
  Address Rotterdam; The Netherlands; October 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference SMIT  
  Notes IAM; Approved no  
  Call Number Admin @ si @ SGG2016 Serial 2942  
Permanent link to this record
 

 
Author (up) Carlos David Martinez Hinarejos; Josep Llados; Alicia Fornes; Francisco Casacuberta; Lluis de Las Heras; Joan Mas; Moises Pastor; Oriol Ramos Terrades; Joan Andreu Sanchez; Enrique Vidal; Fernando Vilariño edit   pdf
openurl 
  Title Context, multimodality, and user collaboration in handwritten text processing: the CoMUN-HaT project Type Conference Article
  Year 2016 Publication 3rd IberSPEECH Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Processing of handwritten documents is a task that is of wide interest for many
purposes, such as those related to preserve cultural heritage. Handwritten text recognition techniques have been successfully applied during the last decade to obtain transcriptions of handwritten documents, and keyword spotting techniques have been applied for searching specific terms in image collections of handwritten documents. However, results on transcription and indexing are far from perfect. In this framework, the use of new data sources arises as a new paradigm that will allow for a better transcription and indexing of handwritten documents. Three main different data sources could be considered: context of the document (style, writer, historical time, topics,. . . ), multimodal data (representations of the document in a different modality, such as the speech signal of the dictation of the text), and user feedback (corrections, amendments,. . . ). The CoMUN-HaT project aims at the integration of these different data sources into the transcription and indexing task for handwritten documents: the use of context derived from the analysis of the documents, how multimodality can aid the recognition process to obtain more accurate transcriptions (including transcription in a modern version of the language), and integration into a userin-the-loop assisted text transcription framework. This will be reflected in the construction of a transcription and indexing platform that can be used by both professional and nonprofessional users, contributing to crowd-sourcing activities to preserve cultural heritage and to obtain an accessible version of the involved corpus.
 
  Address Lisboa; Portugal; November 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IberSPEECH  
  Notes DAG; MV; 600.097;SIAI Approved no  
  Call Number Admin @ si @MLF2016 Serial 2813  
Permanent link to this record
 

 
Author (up) Cesar de Souza; Adrien Gaidon; Eleonora Vig; Antonio Lopez edit   pdf
doi  openurl
  Title Sympathy for the Details: Dense Trajectories and Hybrid Classification Architectures for Action Recognition Type Conference Article
  Year 2016 Publication 14th European Conference on Computer Vision Abbreviated Journal  
  Volume Issue Pages 697-716  
  Keywords  
  Abstract Action recognition in videos is a challenging task due to the complexity of the spatio-temporal patterns to model and the difficulty to acquire and learn on large quantities of video data. Deep learning, although a breakthrough for image classification and showing promise for videos, has still not clearly superseded action recognition methods using hand-crafted features, even when training on massive datasets. In this paper, we introduce hybrid video classification architectures based on carefully designed unsupervised representations of hand-crafted spatio-temporal features classified by supervised deep networks. As we show in our experiments on five popular benchmarks for action recognition, our hybrid model combines the best of both worlds: it is data efficient (trained on 150 to 10000 short clips) and yet improves significantly on the state of the art, including recent deep models trained on millions of manually labelled images and videos.  
  Address Amsterdam; The Netherlands; October 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ECCV  
  Notes ADAS; 600.076; 600.085 Approved no  
  Call Number Admin @ si @ SGV2016 Serial 2824  
Permanent link to this record
 

 
Author (up) Ciprian Corneanu; Marc Oliu; Jeffrey F. Cohn; Sergio Escalera edit   pdf
doi  openurl
  Title Survey on RGB, 3D, Thermal, and Multimodal Approaches for Facial Expression Recognition: History Type Journal Article
  Year 2016 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 28 Issue 8 Pages 1548-1568  
  Keywords Facial expression; affect; emotion recognition; RGB; 3D; thermal; multimodal  
  Abstract Facial expressions are an important way through which humans interact socially. Building a system capable of automatically recognizing facial expressions from images and video has been an intense field of study in recent years. Interpreting such expressions remains challenging and much research is needed about the way they relate to human affect. This paper presents a general overview of automatic RGB, 3D, thermal and multimodal facial expression analysis. We define a new taxonomy for the field, encompassing all steps from face detection to facial expression recognition, and describe and classify the state of the art methods accordingly. We also present the important datasets and the bench-marking of most influential methods. We conclude with a general discussion about trends, important questions and future lines of research.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB; Approved no  
  Call Number Admin @ si @ COC2016 Serial 2718  
Permanent link to this record
 

 
Author (up) Cristhian A. Aguilera-Carrasco; F. Aguilera; Angel Sappa; C. Aguilera; Ricardo Toledo edit   pdf
doi  openurl
  Title Learning cross-spectral similarity measures with deep convolutional neural networks Type Conference Article
  Year 2016 Publication 29th IEEE Conference on Computer Vision and Pattern Recognition Worshops Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract The simultaneous use of images from different spectracan be helpful to improve the performance of many computer vision tasks. The core idea behind the usage of crossspectral approaches is to take advantage of the strengths of each spectral band providing a richer representation of a scene, which cannot be obtained with just images from one spectral band. In this work we tackle the cross-spectral image similarity problem by using Convolutional Neural Networks (CNNs). We explore three different CNN architectures to compare the similarity of cross-spectral image patches. Specifically, we train each network with images from the visible and the near-infrared spectrum, and then test the result with two public cross-spectral datasets. Experimental results show that CNN approaches outperform the current state-of-art on both cross-spectral datasets. Additionally, our experiments show that some CNN architectures are capable of generalizing between different crossspectral domains.  
  Address Las vegas; USA; June 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes ADAS; 600.086; 600.076 Approved no  
  Call Number Admin @ si @AAS2016 Serial 2809  
Permanent link to this record
 

 
Author (up) Cristina Palmero; Albert Clapes; Chris Bahnsen; Andreas Møgelmose; Thomas B. Moeslund; Sergio Escalera edit   pdf
doi  openurl
  Title Multi-modal RGB-Depth-Thermal Human Body Segmentation Type Journal Article
  Year 2016 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
  Volume 118 Issue 2 Pages 217-239  
  Keywords Human body segmentation; RGB ; Depth Thermal  
  Abstract This work addresses the problem of human body segmentation from multi-modal visual cues as a first stage of automatic human behavior analysis. We propose a novel RGB–depth–thermal dataset along with a multi-modal segmentation baseline. The several modalities are registered using a calibration device and a registration algorithm. Our baseline extracts regions of interest using background subtraction, defines a partitioning of the foreground regions into cells, computes a set of image features on those cells using different state-of-the-art feature extractions, and models the distribution of the descriptors per cell using probabilistic models. A supervised learning algorithm then fuses the output likelihoods over cells in a stacked feature vector representation. The baseline, using Gaussian mixture models for the probabilistic modeling and Random Forest for the stacked learning, is superior to other state-of-the-art methods, obtaining an overlap above 75 % on the novel dataset when compared to the manually annotated ground-truth of human segmentations.  
  Address  
  Corporate Author Thesis  
  Publisher Springer US Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB; Approved no  
  Call Number Admin @ si @ PCB2016 Serial 2767  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: