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Abstract

Random Forest (RF) is a successful paradigm for learning classifiers due to its
ability to learn from large feature spaces and seamlessly integrate multi-class
classification, as well as the achieved accuracy and processing efficiency. However,
as many other classifiers, RF requires domain adaptation (DA) provided that there
is a mismatch between the training (source) and testing (target) domains which
provokes classification degradation. Consequently, different RF-DA methods have
been proposed, which not only require target-domain samples but revisiting the
source-domain ones, too. As novelty, we propose three inherently different methods
(Node-Adapt, Path-Adapt and Tree-Adapt) that only require the learned source-
domain RF and a relatively few target-domain samples for DA, i.e. source-domain
samples do not need to be available. To assess the performance of our proposals we
focus on image-based object detection, using the pedestrian detection problem as
challenging proof-of-concept. Moreover, we use the RF with expert nodes because
it is a competitive patch-based pedestrian model. We test our Node-, Path- and
Tree-Adapt methods in standard benchmarks, showing that DA is largely achieved.

1 Introduction

Random Forest (RF) is a paradigm that allows to learn an ensemble of randomized decision-tree
classifiers [1, 2]. RF is very successful due to its ability to learn from large feature spaces and
seamlessly integrate multi-class classification, as well as the accuracy and processing efficiency
achieved by the ensemble. Note that the evaluation of the trees can be parallelized (their training
too) or a sequential soft-cascade used [3]; moreover, evaluating a relatively well-balanced tree shows
logarithmic complexity with the number of nodes. We can find recent paradigmatic applications
such as its use for pose recognition in depth images (Kinect) [4], or as classification layer in the
GoogLeNet deep CNN architecture for large-scale image classification [5].

Usually, when learning any classifier, including RF, it is assumed that the training and testing samples
follow the same probability distribution. However, in practice, there are application-dependent
reasons that make this assumption to fail. The consequence is that the classifier performs worse than
expected. In this case, we have to augment the machine learning formalism with the concepts of
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source and target domains. The training samples are acquired in the former, and the testing ones in
the latter. Then, the challenge is to define a domain adaptation (DA) method which allows to adapt the
source-domain-trained classifier for performing well in the target domain, with a minimum effort. By
minimum effort we refer to several assumptions. For instance, it is assumed little data labeling effort,
i.e. either we have relatively few labeled target-domain samples to perform the (supervised) DA, or
we have eventually many target-domain samples but without labels (unsupervised DA). Moreover,
DA methods that use the source-domain classifier and target-domain samples (model-transfer) are
preferred over those relying on the source-domain samples (feature-transfer). Note that in some cases
it may not be possible to have access to the source-domain samples (e.g. a trained classifier can be
available for public use, while the data used for its training may be confidential), and in any case the
DA used to be slower and more memory demanding.

In this paper, we focus on supervised model-transfer DA for RF classifiers. In fact, as we will
summarize in Sect. 2, there are previous DA methods for RF; however, they require revisiting the
source-domain samples. Thus, aiming model-transfer DA for RF is a novelty of this paper. Actually,
after quickly reviewing the specific RF paradigm used here (Sect. 3), we will propose three inherently
different methods (Sect. 4), termed as Node-Adapt, Path-Adapt and Tree-Adapt, according to the level
at which adaptation is performed.

Model-tranfer DA is especially relevant when dealing with complex data such as images. Therefore,
in this paper, to assess the performance of our proposals, we focus on image-based object detection,
using the pedestrian detection problem as challenging proof-of-concept. Moreover, we use the RF
with local expert splitting nodes (RF-LE) [6–8] because it allows to learn a patch-based pedestrian
model which is competitive even with more elaborated deep CNNs [9]. As we will see (Sect. 5), we
test our Node-, Path- and Tree-Adapt methods in standard benchmarks, showing that DA is largely
achieved. Interestingly, we will show how a pedestrian detector based on a RF-LE trained with
synthetic data (no manual labeling required) together with a relatively low number of real-world
labels, performs not too far than an equivalent detector based on the labeling of 10-20 times more
pedestrians. Finally, Sect. 6 draws our conclusions.

2 Related works

Several methods have been proposed to face the DA problem for RF. Goussies et al. [10] consider
supervised transfer learning for gesture and character recognition. They propose a method for tuning
the splitting function parameters of each node, so that the information gain of the target and source-
domain samples decrease simultaneously. Danielsson and Aghazadeh [11] focus on unsupervised
DA to adapt a pose estimator learned in synthetic data to operate in real scenarios. They propose
an optimization function which selects the best parameters for the splitting function in each node.
This is done by minimizing the information gain of the source-domain samples while minimizing
the chi-square distance between the source and target feature histograms. Vezhnevets and Buhmann
[12] performed DA for the so-called semantic texton forest used for semantic segmentation. They
consider the same theoretical setting as [11] but using L1-norm for calculating the distance between
two histograms instead of the chi-square.

All these RF-DA methods require the source-domain samples, i.e. they follow the feature-transfer
paradigm. In contrast, model-transfer DA methods are eventually more interesting since the source
data is not always available and they tend to be more computationally efficient; thus, opening the door
to hierarchical and online adaptation strategies. In fact, there are already model-transfer DA proposal
for popular successful classifiers such as SVM [13–15], structural SVM (SSVM) [16], deep CNNs
[17], SSVM in hierarchical target domains [18], and SSVM in an online setting [19]. In this paper, as
novelty, we aim at proposing and evaluating three complementary model-transfer DA methods for
the RF-LE.

3 Random forest of local experts

Random Forest is a paradigm that allows to learn an ensemble of randomized decision-tree classifiers
from a set of training samples. The classification of a testing sample depends on the average
classification probabilities over all the trees. Randomness is the core to produce non-correlated
decision trees which together lead to a highly accurate ensemble. In this paper, we focus on the
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Algorithm 1 Training steps for the jth node of the Random Forest of Local Experts (details in [7])

1) K feature selectors (patches) φ1(~v), ..., φK(~v) are selected randomly.
2) For k = 1, ...,K do:

2.1) Let Sj,φk
be the transformed set of samples, Sj,φk

= {φk(~v) : ~v ∈ Sj}.
2.2) Learn the linear SVM weights ~ψk with Sj,φk

.

2.3) Let θ = (φk, ~ψk, τ) and h(~v; θ) = {~ψk · φk(~v) + τ ≥ 0 : l; r}.
Let τk = arg maxτ I(Sj,φk

; θk) according to Eq. (1) and then θk = (φk, ~ψk, τk).

3) Let j = arg maxk∈{1,...,K} I(Sj,φk
; θk). Then θj = (φj , ~ψj , τj).

RF-LE proposed in [7] for binary classification (i.e. pedestrian vs background), which is competitive
for pedestrian detection [9]. In this case the training samples come in the form of image windows with
a canonical size and the label that indicates if the window contains either a pedestrian or background.
Randomness is introduced at splitting nodes. In particular, many possible rectangular sub-windows
within the canonical window are considered (patches), but just a randomly chosen subset is selected.
The samples reaching a splitting node are evaluated according to such selected patches. For each
patch a combination of its HOG and LBP features is feed into a linear SVM learning process. The
patch that allows to learn the best linear SVM is chosen as the local expert that remains attached to the
splitting node. Here, best is defined in terms of the purity of the two sample partitions (considering
only the samples reaching the node) induced by applying each linear SVM with an optimum score
threshold. In the following we summarize this procedure more formally.

Let Sj be the set of samples reaching the splitting jth node of the tree under training. Let h(~v; θj) ∈
{l, r} be the splitting parametric function at node jth, being θj the set of parameters and ~v ∈ Sj a
feature vector (representing a sample). The optimal θj is learned as θj = arg maxθ I(Sj ; θ), where
I(Sj ; θ) is the information gain defined by:

I(Sj ; θ) = H(Sj)− ((|Slj,θ|/|Sj |)H(Slj,θ)+(|Srj,θ|/|Sj |)H(Srj,θ)), H(S) ≡ ClassEntropyOf(S), (1)

where θ induces a two-subset split of Sj (Sj = Slj,θ ∪ Srj,θ) by evaluating Sj with h(~v; θ); i.e.
∀~v ∈ Sj , ~v will go to Scj,θ if h(~v; θ) = c, c ∈ {l, r}. More precisely, θ = (φ, ~ψ, τ), so that
h(~v; θ) = {~ψ · φ(~v) + τ ≥ 0 : l; r}. Following [7], ~v contains the HOG+LBP features representing
a given canonical window (i.e. a sample), φ(~v) contains the HOG+LBP features of a selected sub-
window within the canonical window, and ~ψ · φ(~v) consists in applying a linear SVM (~ψ is the vector
of weights, and "·" means scalar product). All θj are fixed at testing time, at training time randomness
is introduced while looking for the best ~ψ at each splitting node. Algorithm 1 summarizes the learning
procedure for any splitting node. A node becomes a leaf node if either a maximum tree depth is
reached, or the number of samples reaching the node is below a threshold (no sense to split them
more), or if the percentage of samples belonging to a class is above a threshold. The percentage of
positive and negative samples (e.g. pedestrians and backgrounds) reaching a leaf node determines the
posterior probability distribution attached to the node, i.e. the node P (y|~v), being y the class label
(pedestrian or background). The different trees of the forest are trained independently.

A sample ~v under classification is processed by all the forest’ trees (but soft-cascade can be used for
speeding up the process [7]), which is done by thresholding the following posterior probability:

P (y|~v) =
1

T

T∑
i=1

Pi(y|~v), (2)

where T is the number of trees in the forest, and Pi(y|~v) is the posterior probability that tree i assigns
to sample ~v. For obtaining Pi(y|~v), ~v is routed through the tree i by the splitting nodes until reaching
a leaf node, and the P (y|~v) at this leaf node is taken as the final Pi(y|~v) of the tree.
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(a) Source-domain tree. (b) Reshaped target-domain tree.

Figure 1: Node- and Path-Adapt rely on the structure of source trees, which are reshaped during DA.
Eq. (4) is derived for the highlighted paths of the corresponding source- and target-domain trees.

4 Domain adaptation for random forest

We assume the so-called covariate shift commonly considered for object detection problems [20]; i.e.
the marginal distribution of the source- and target-domain samples are different (P s(~vs) 6= P t(~vt))
while their posterior distributions are similar (P s(y|~vs) ' P t(y|~vt)). Then, in model-transfer DA,
we can search for a classifier in the target-domain hypothesis space which can discriminate the
available target-domain samples properly, while being similar to the source classifier which acts as
regularizer (prior knowledge). This regularization is important since we assume a supervised DA
setting where the number of target-domain samples is relatively low. In particular, we have a set Sta
of m target-domain labeled samples and a RF-LE (F s) trained on n source-domain samples, m� n.
Overall, our final goal is to learn an accurate RF-LE (F ta), using Sta and F s as regularizer. To
achieve this, we present three novel and inherently different supervised model-transfer DA methods:
Node-Adapt (Sect. 4.1), Path-Adapt (Sect. 4.2), and Tree-Adapt (Sect. 4.3).

In Node- and Path-Adapt we build a forest F ta only using Sta and forcing it to match as much as
possible the structure of F s. Briefly, the number of trees is the same (T ), and the feature selectors
at nodes (φj) as well as the maximum depth of each path are not changed. In Node-Adapt such
adaptation is done at node level, both the linear SVM weights (~ψj) and thresholds (τj) are adapted.
In Path-Adapt, the adaptation is done simultaneously for all the nodes of each root-to-leaf path, but
only the thresholds (τj) are adjusted. Tree-Adapt consists in a reforestation. A ratio C of randomly
selected trees of F s is replaced by the same number of trees trained with Sta from the scratch.

4.1 Node-Adapt

Node-Adapt applies a node level adaptation separately for each of the trees cloned from F s; thus,
we can focus on how this is done for the ith tree by using Sta . The method proceeds as follows
(see Fig. 1). The first node of i to be adapted is the root, whose local expert is parameterized by
θsj = (φsj ,

~ψsj , τ
s
j ) for j = 1, where the upper script reminds that it was learned in the source domain.

The adaptation will act on ~ψsj and τsj but the feature selector φsj does not change, so we can just denote
it as φj . In particular, Node-Adapt applies the Adaptive SVM (A-SVM) [13], a model-transfer convex
DA method, to obtain an adapted SVM hyper-plane ~ψtaj by using Staj and ~ψsj . This is done by solving
the following optimization problem formulated for any node j (for the root j = 1 ∧ Sta1 = Sta ):

~ψtaj = arg min~ψj

1
2‖~ψj − C1

~ψsj‖2 + C2

∑|Sta
j |

k=1 εk,

s.t. : εk ≥ 0 ∧ yk. ~ψj · φj(~vtak ) ≥ 1− εk ∀k ∈
{

1, ..., |Staj |
}
,

(3)

where yk is the class label of the target-domain feature vector ~vtak . Note that class labels do not
change from source to target domains, so we do not need to distinguish domains for them. The main
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goal of Eq. (3) is to obtain a hyper-plane (~ψtaj ) which can separate the different classes properly
in target domain while, according to covariate shift at node level, being similar to the source-
domain hyper-plane (~ψsj ). C1 and C2 are the coefficients which control the amount of similarity to
the source-domain hyper-plane and the amount of classification correctness on the target domain,
respectively. Once we have ~ψtaj , the new τ taj is obtained similarly than in step 2.2) of Algorithm 1,
i.e. τ taj = arg maxτ I(Staj ;φj , ~ψ

ta
j , τ). Now, we have the new parameters defining the adapted

root node, i.e. θtaj = (φj , ~ψ
ta
j , τ

ta
j ) (j = 1). This means that we can apply h(~vtak ; θtaj ) ∀~vtak ∈ S

ta
j ;

therefore, we obtain the split Staj = Sl,taj ∪ Sr,taj . Next, we apply the same procedure for the child
nodes of the root using Sl,taj and Sr,taj as input for the left and right nodes, respectively. The process
continues until the leaves of the ith tree are reached. If the conditions for establishing a leaf node (the
same than for learning source-domain trees) fulfill in a splitting node of the ith tree, then it becomes
a leaf node and its corresponding posterior density is computed using the target-domain samples that
reached it. Note that this can happen because the original structure of the ith tree was learned with
n source-domain samples, while the adaptation is based on the m target-domain samples, and we
assume m� n. Thus, the adapted tree is a reshaped version of the original one (Fig. 1). In addition,
since we apply A-SVM at node level, we need to show that the covariate shift assumption is valid
between two corresponding nodes of the source and target domains, which we prove as follows:

P s(y|~v) ' P t(y|~v)
⇒ P si (y|φ1(~v)) ' P ti (y|φ1(~v))

⇒ [ ~ψs1, τ
s
1 ] ' [ ~ψt1, τ

t
1] (SVM and I(St1;φ1, ~ψ

t
1, τ) are related to the posteriors in the domains)

⇒ P si (y| ~ψs1.φ1(~v) + τs1 ) ' P ti (y| ~ψt1.φ1(~v) + τ t1)

⇒ P si (y| ~ψs1.φ1(~v) + τs1 ≥ 0) ' P ti (y| ~ψt1.φ1(~v) + τ t1 ≥ 0) (posteriors of the samples which
reach to the second node in the source and target domains are similar)

⇒ [ ~ψs2, τ
s
2 ] ' [ ~ψt2, τ

t
2]

⇒ ...

⇒ P si (y| ~ψs1.φ1(~v) + τs1 , ...,
~ψsd.φd(~v) + τsd ) ' P ti (y| ~ψt1.φ1(~v) + τ t1, ...,

~ψtd.φd(~v) + τ td)

⇒ P si (y| ~ψs1.φ1(~v) + τs1 ≥ 0, ..., ~ψs.φd(~v) + τsd ≥ 0) '
P ti (y| ~ψt1.φ1(~v) + τ t1 ≥ 0, ..., ~ψtd.φd(~v) + τ td ≥ 0).

(4)
Of course, this reasoning can be extended to all other paths in the tree.

4.2 Path-Adapt

Path-Adapt performs adaptation for each path of each source-domain tree instead of for each node
individually; i.e. for all splitting nodes in a given path, the adaptation is done simultaneously.
Therefore, we need to show that the covariate shift assumption holds at path level, i.e. beyond node
level as required for Node-Adapt. In order to do that, as for Node-Adapt, we assume that the structure
of the source-domain forest, F s, is similar to the target-domain forest we are searching for, F t. Thus,
according to Eq. (4), we can show the relation P si (y| ~ψs1.φ1(~v) + τs1 ,

~ψs2.φ2(~v) + τs2 , ...,
~ψsd.φd(~v) +

τsd ) ' P ti (y| ~ψt1.φ1(~v) + τ t1,
~ψt2.φ1(~v) + τ t2, ...,

~ψtd.φd(~v) + τ td), is established between each path
of the ith tree of F t and its corresponding path of the ith tree of F s, where d is the index of the
last splitting node in the pth path of the ith tree. Now, we define Qsp = [ ~ψs1, τ

s
1 ; ~ψs2, τ

s
2 ; ...; ~ψsd, τ

s
d ]

and Qtp = [ ~ψt1, τ
t
1; ~ψt2, τ

t
2; ...; ~ψtd, τ

t
d] as two mapping functions for projecting the feature set Φp =

[φ1(~v), 1;φ2(~v), 1; ...;φd(~v), 1] to a new feature space. Let [ ~W s
p , b

s
p] be the SVM hyper-plane that

we could learn in the Qsp · Φp(~v) = ( ~ψs1 · φ1(~v) + τs1 , . . . ,
~ψsd · φd(~v) + τsd ) d-dimensional feature

space, using sufficient source-domain data. Let [ ~W t
p, b

t
p] the analogous case using Qtp · Φp(~v) and

target-domain data. Then, [ ~W s
p , b

s
p] and [ ~W t

p, b
t
p] should be similar since, according to Eq. (4), the

relations Qsp ' Qtp and P si (y|Qsp · Φp(~v)) ' P ti (y|Qtp · Φp(~v)) exist for every path of the tree (i.e.
the covariate shift assumption in path level).

Accordingly, the strategy of Path-Adapt starts by searching for a Q̃tp function so that, after projecting
the target-domain samples in Sta to the new feature space, they can be class-discriminated successfully
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by [ ~W s
p , b

s
p]. In particular, using the same structure than F s (same T , maximum depth of each path,

and φj(~v) feature selectors), as well as Sta , a new forest F̃ t is learned. Note that in this process there
is no randomness, F̃ t is a reshaped version of F s (leaves change, remind m � n). Now, we can
define Q̃tp = [ψ̃t1, τ̃

t
1; ψ̃t2, τ̃

t
2; ...; ψ̃td, τ̃

t
d] for the pth path of F̃ t. At this point, Path-Adapt uses Sta and

[ ~W s
p , b

s
p] to adapt Q̃tp. However, the dimensionality of Q̃tp can be eventually too high depending on

the length of the path and the particular feature selectors in it, while at the same time the number of
samples in Sta that eventually are considered along the path can be too low. Therefore, we propose
to adapt only the thresholds. In particular, we propose the following optimization problem:

Bta = argminBt

1

2
||Bt − B̃t||2 + C

Ri∑
p=1

m∑
k=1

εk,p;

s.t : εk,p ≥ 0 ∧ yk( ~W s
p · (Q̃tp · Φp(~v

ta
k ) + bsp)) ≥ −εk,p ∀k ∈ {1, . . . ,m} , p ∈ {1, . . . , Ri} ,

(5)

where Bt = [τ t1, τ
t
2, ..., τ

t
N ], and B̃t = [τ̃ t1, τ̃

t
2, ..., τ̃

t
N ]. N is equal to the number of nodes and Ri

stands for the number of paths in the ith tree. C is a coefficient that controls the amount of similarity
to the source model. We also restrict the adapted thresholds (Bta ) to be similar to the target thresholds
(B̃t) to make balance between similarity to the source model and correctness of classification on target
domain. Eq. (5) is a QP convex optimization problem that can be solved with standard optimization
packages. Finally, after obtaining the new thresholds for each tree, Sta is used again for reshaping
and computing the posterior probabilities at the new leaves, so obtaining a final adapted forest F ta .

The hyper-plane [ ~W s
p , b

s
p] is computed after the training of F s. In other words, for further domain

adaptation, Path-Adapt requires to learn the different [ ~W s
p , b

s
p] as source-domain work. In fact, for

each tree of F s, and for each path in a given tree, we need to learn and store different [ ~W s
p , b

s
p] since

we cannot know a priori which splitting nodes in F s will become leaves in F̃ t and, therefore, which
will be the final depth of a given path p. In particular, if d is the length a path of a tree in F s, then it
is required to learn d linear SVMs for such a path, using the source-domain samples. However, this is
not necessarily quite time consuming since we even expect dim(Qsp.Φp) � dim(φj(~v)) for each
node j in the path. Moreover, note that during Path-Adapt, the ~ψsj are not used. Intuitively, such a
collection of hyper-planes acts as a compact proxy of the source-domain data and the local experts
~ψsj during the Path-Adapt process.

4.3 Tree-Adapt

According to the covariate shift assumption between source and target domains, in Tree-Adapt we
replace a ratio C of randomly selected trees in F s, by an equivalent number of trees trained with Sta
from the scratch. If we name as F tam the forest formed by such target-oriented set of trees, then joining
F tam and F s, gives rise to the adapted forest F ta of T trees. Thus, F ta has a posterior distribution
based on F s and F tam , balanced by C:

P (y|~v) =
1

T

CT∑
i=1

P tai (y|~v) +

(1−C)T∑
i=1

P si (y|~v)

 ,where 0 < C ≤ 1. (6)

5 Experimental results

In this section we show the effectiveness of the proposed DA methods for RF-LE. We present
quantitative results on vision-based pedestrian detection as a challenging proof-of-concept object
detection problem. We select four widely used pedestrian datasets, namely Virtual [21], INRIA [22],
Daimler [23] and KITTI [24], to evaluate the RF-DA methods. In the case of KITTI we follow the
train/test partition proposed in [? ]. Pedestrians and backgrounds from these datasets can be seen in
Fig. 2.
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(a) Virtual (b) INRIA (c) Daimler (d) KITTI

Figure 2: Pedestrians and backgrounds of four different datasets. The samples of these datasets
show differences due to the camera (resolution, B/W-vs-color, sensor sensitivity, focal length, lens
distortion); image acquisition conditions (usual viewpoint, scene illumination, backgrounds); and
even the typical human poses and clothes.

Table 1: The average miss rate (AMR) for 11 points in the interval of [0.01, 1] FPPI is calculated and
shown for different baselines (Src, Tar100%, TarX% where X = 10 for INRIA and KITTI and X=5
for Daimler) and RF-DA methods (Node-Adapt, Path-Adapt and Tree-Adapt). Where V = Virtual, I =
INRIA, D = Daimler, K = KITTI. Each "A→ B" experiment is run five times to provide a mean AMR
and corresponding standard deviation; thus the lower the better. Note how, Node-Adapt, Path-Adapt
and Tree-Adapt show successful adaptation in most combinations (comparing with Src and TarX%,
even with Tar100).

Src Tar100% Tar X% Node-Adapt Path-Adapt Tree-Adapt

V→ I 19.06±1.77 11.09±1.12 17.74±2.17 16.37±1.84 16.70±1.47 14.59±1.39
V→ D 31.95±1.35 25.57±1.36 30.98±3.06 27.95±3.70 29.41±2.70 25.39±1.94
V→ K 51.07±2.40 36.02±2.28 53.06±3.93 45.55±3.98 38.95±2.36 41.59±2.20
I→ D 23.28±1.65 25.57±1.36 30.77±3.08 26.72±3.69 26.69±4.46 22.87±2.30
I→ K 44.41±1.79 36.02±2.28 53.06±3.93 44.88±3.07 38.84±4.37 37.24±1.95
D→ I 21.98±1.29 11.09±1.12 17.74±2.17 14.77±1.58 14.66±2.27 13.92±1.17
D→ K 58.96±1.85 36.02±2.28 53.06±3.93 44.91±2.42 41.58±2.97 42.10±2.25
K→ I 48.19±1.57 11.09±1.12 17.74±2.17 17.74±3.21 16.22±2.19 18.17±1.92
K→ D 44.87±2.37 25.57±1.36 30.77±3.08 26.41±3.43 27.41±2.81 26.36±2.10

5.1 Experimental setup & implementation details

The Virtual dataset is used only as source domain. The rest are considered both as source and target
domains thanks to the use of different training and testing sets per dataset. In order to run a DA
experiment we select a relatively low number of the samples available in the training set of the
target-domain dataset. For INRIA and KITTI this is ∼ 10%, while for Daimler we use ∼ 5% since it
is a larger training dataset.

Regarding the training of the RF-LE, we follow the instructions reported in [7], e.g. we use 100
trees and the maximum depth for the trees is set to 7, and HOG+LBP features are used as image
descriptors.

The average miss rate (AMR) vs false positives per image (FPPI) [25] to report detection accuracy. To
set the hyper-parameters of the different adaptation methods (i.e. the C’s), we used the Virtual-INRIA
DA problem. These values are then used for the rest of experiments.

5.2 Results

In order to show the effectiveness of the proposed RF-DA methods, we run experiments for different
combinations of source and target domains. Each train-test experiment is repeated five times and we
report the mean and standard deviation of AMR versus FPPI in the interval of [0.01, 1]. We compare
Node-Adapt, Path-Adapt and Tree-Adapt methods in each experiment with the RF trained only with
source data (Src), the RF trained with all samples of the target domain (Tar100%), and with the RF
trained only on the limited number of target-domain samples(TarX%).
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Table 2: Analogous to Table 1 but for a more challenging situation in terms of available target-domain
data. In particular, X = 5 for INRIA and KITTI and X = 3 for Daimler.

Src Tar100% Tar X% Node-Adapt Path-Adapt Tree-Adapt

V→ I 19.06±1.77 11.09±1.12 24.97±3.85 19.29±1.38 18.77±2.72 16.65±2.15
V→ D 31.95±1.35 25.57±1.36 31.01±3.63 28.55±3.14 29.56±4.80 25.77±1.97
V→ K 51.07±2.40 36.02±2.28 57.96±3.69 44.24±4.26 38.34±2.03 43.36±2.28
I→ D 23.28±1.65 25.57±1.36 31.71±3.23 27.12±3.34 28.65±3.78 23.71±1.79
I→ K 44.41±1.79 36.02±2.28 58.34±2.89 44.33±2.41 40.52±2.23 39.79±2.87
D→ I 21.98±1.29 11.09±1.12 20.62±5.53 17.66±2.32 16.33±2.73 15.23±2.29
D→ K 58.96±1.85 36.02±2.28 56.41±2.35 47.39±2.56 45.48±2.75 45.20±2.50
K→ I 48.19±1.57 11.09±1.12 24.34±5.41 21.02±2.84 19.08±3.43 19.31±3.18
K→ D 44.87±2.37 25.57±1.36 30.92±3.23 27.53±2.97 27.81±3.16 26.36±3.44

In this case, DA is successful if reduces the AMR of both Src and TarX%, and is close to the AMR of
Tar100%. Therefore, we can see in Table 1, that Node-Adapt, Path-Adapt and Tree-Adapt provide
successful results. Notably, Tree-Adapt, the simplest strategy, is more successful than the other two.

Node-Adapt and Path-Adapt report similar performance. However, when the number of available
samples in target domain is limited, the probability of error propagation becomes higher for Node-
Adapt (too few samples to train the local experts) and, a priori, Path-Adapt should be more successful
since it uses all samples for adapting to adapt less parameters. Tree-Adapt can suffer the same
problem that Node-Adapt since the learned target-domain trees can be too shallow. To assess this
point, we repeat the same experiments with half of available target-domain samples. Table 2 shows
the corresponding results1.

Indeed, Path-Adapt is more effective than Node-Adapt in this demanding scenario. However, Tree-
Adapt still is the most effective method. On the other hand, for low memory adaptive embedded
systems (e.g. a domestic cleaning robot), Path-Adapt is interesting in the sense that it requires scarce
information from the source domain since the data and node hyper-planes are not required, just the
source tree topology and the compact path SVMs are needed. So the system can come with a sort
of common knowledge and be (self-)adapted for the particular environment. After all, Path-Adapt
results are just scarcely worse than those of Tree-Adapt.

Overall, we conclude that among the three tested strategies, Tree-Adapt is the simplest to implement
and the one that offers better results. Interestingly, Table 1 shows that the pedestrian detector based
on the RF-LE trained with synthetic data (no manual labeling required) and adapted with a relatively
low number of real-world labels using Tree-Adapt, performs not too far than an equivalent detector
based on the labeling of 10-20 times more pedestrians (Tar100%). In addition, as we have mentioned,
Path-Adapt can be a good alternative depending on the application.

6 Conclusions

We have proposed three novel supervised model-transfer DA methods for RF-LE models, namely
Node-Adapt, Path-Adapt and Tree-Adapt. These methods are inherently different since they perform
the adaption at different levels of the RF-LE. We have investigated the validity of the covariate shift
assumption for them to support their approaches of adaptation. We have assessed their performance
by facing the challenge of vision-based pedestrian detection. In particular, we have considered four
well-known benchmark datasets as different domains. The conclusion is that, although these three
proposals achieve DA, Tree-Adapt is the most successful method to adapt RF-LE models, and opens
the door to the use of virtual worlds as source domain for reducing the number of object annotations.
As future work we plan several working lines. First, we want to assess the possibility of combining
the core ideas behind the proposed methods so that adaptation is further improved; alternatively they
can be used to self-annotate training data for progressively improving its accuracy (each method
acting as a different oracle). Second, we want to assess how Tree-Adapt can be used in an online
learning setting.

1The information in Table 1 and in Table 2 is plotted as AMR-vs-FPPI curves in the supplementary material.
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Supplementary Materials

1.Results of Table 1 as plots

(a) (b)

(c) (d)

(e) (f)
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(i)

Figure 3: Average miss rate vs FPPI curve in the interval of [0.01, 1] is plotted for Node-Adapt,
Path-Adapt and Tree-Adapt in comparison to different baselines: Src, Tar100%, Tar10% (when the
target domains are Kitti or INRIA) and Tar5% (when the target domain is Daimler). The experiment
is repeated for all combination of the source and target domains. As can be seen, the proposed
DA methods can achieve lower miss rate than Src and Tar10% or Tar5% baselines which indicates
successful adaptation. Tree-Adapt is the most successful one.
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2.Results of Table 2 as plots

(a) (b)

(c) (d)

(e) (f)
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(g) (h)

(i)

Figure 4: Average miss rate vs FPPI curve in the interval of [0.01, 1] is plotted for Node-Adapt,
Path-Adapt and Tree-Adapt in comparison to different baselines: Src, Tar100%, Tar5% (for Kitti
or INRIA as the target domain) and Tar3% (for Daimler as the target domain) when the number of
available target samples is very low. Comparing to Figure1, Node-Adapt obtains higher miss rate
than Path-Adapt which indicates that the robustness of Path-Adapt is more than Node-Adapt in the
few training target samples situation.
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