Marc Masana, Bartlomiej Twardowski, & Joost Van de Weijer. (2020). On Class Orderings for Incremental Learning. In ICML Workshop on Continual Learning.
Abstract: The influence of class orderings in the evaluation of incremental learning has received very little attention. In this paper, we investigate the impact of class orderings for incrementally learned classifiers. We propose a method to compute various orderings for a dataset. The orderings are derived by simulated annealing optimization from the confusion matrix and reflect different incremental learning scenarios, including maximally and minimally confusing tasks. We evaluate a wide range of state-of-the-art incremental learning methods on the proposed orderings. Results show that orderings can have a significant impact on performance and the ranking of the methods.
|
|
David Berga, Marc Masana, & Joost Van de Weijer. (2020). Disentanglement of Color and Shape Representations for Continual Learning. In ICML Workshop on Continual Learning.
Abstract: We hypothesize that disentangled feature representations suffer less from catastrophic forgetting. As a case study we perform explicit disentanglement of color and shape, by adjusting the network architecture. We tested classification accuracy and forgetting in a task-incremental setting with Oxford-102 Flowers dataset. We combine our method with Elastic Weight Consolidation, Learning without Forgetting, Synaptic Intelligence and Memory Aware Synapses, and show that feature disentanglement positively impacts continual learning performance.
|
|
M. Li, Xialei Liu, Joost Van de Weijer, & Bogdan Raducanu. (2020). Learning to Rank for Active Learning: A Listwise Approach. In 25th International Conference on Pattern Recognition (pp. 5587–5594).
Abstract: Active learning emerged as an alternative to alleviate the effort to label huge amount of data for data hungry applications (such as image/video indexing and retrieval, autonomous driving, etc.). The goal of active learning is to automatically select a number of unlabeled samples for annotation (according to a budget), based on an acquisition function, which indicates how valuable a sample is for training the model. The learning loss method is a task-agnostic approach which attaches a module to learn to predict the target loss of unlabeled data, and select data with the highest loss for labeling. In this work, we follow this strategy but we define the acquisition function as a learning to rank problem and rethink the structure of the loss prediction module, using a simple but effective listwise approach. Experimental results on four datasets demonstrate that our method outperforms recent state-of-the-art active learning approaches for both image classification and regression tasks.
|
|
Carola Figueroa Flores, Bogdan Raducanu, David Berga, & Joost Van de Weijer. (2021). Hallucinating Saliency Maps for Fine-Grained Image Classification for Limited Data Domains. In 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (Vol. 4, pp. 163–171).
Abstract: arXiv:2007.12562
Most of the saliency methods are evaluated on their ability to generate saliency maps, and not on their functionality in a complete vision pipeline, like for instance, image classification. In the current paper, we propose an approach which does not require explicit saliency maps to improve image classification, but they are learned implicitely, during the training of an end-to-end image classification task. We show that our approach obtains similar results as the case when the saliency maps are provided explicitely. Combining RGB data with saliency maps represents a significant advantage for object recognition, especially for the case when training data is limited. We validate our method on several datasets for fine-grained classification tasks (Flowers, Birds and Cars). In addition, we show that our saliency estimation method, which is trained without any saliency groundtruth data, obtains competitive results on real image saliency benchmark (Toronto), and outperforms deep saliency models with synthetic images (SID4VAM).
|
|
Riccardo Del Chiaro, Bartlomiej Twardowski, Andrew Bagdanov, & Joost Van de Weijer. (2020). Recurrent attention to transient tasks for continual image captioning. In 34th Conference on Neural Information Processing Systems.
Abstract: Research on continual learning has led to a variety of approaches to mitigating catastrophic forgetting in feed-forward classification networks. Until now surprisingly little attention has been focused on continual learning of recurrent models applied to problems like image captioning. In this paper we take a systematic look at continual learning of LSTM-based models for image captioning. We propose an attention-based approach that explicitly accommodates the transient nature of vocabularies in continual image captioning tasks -- i.e. that task vocabularies are not disjoint. We call our method Recurrent Attention to Transient Tasks (RATT), and also show how to adapt continual learning approaches based on weight egularization and knowledge distillation to recurrent continual learning problems. We apply our approaches to incremental image captioning problem on two new continual learning benchmarks we define using the MS-COCO and Flickr30 datasets. Our results demonstrate that RATT is able to sequentially learn five captioning tasks while incurring no forgetting of previously learned ones.
|
|
Yaxing Wang, Lu Yu, & Joost Van de Weijer. (2020). DeepI2I: Enabling Deep Hierarchical Image-to-Image Translation by Transferring from GANs. In 34th Conference on Neural Information Processing Systems.
Abstract: Image-to-image translation has recently achieved remarkable results. But despite current success, it suffers from inferior performance when translations between classes require large shape changes. We attribute this to the high-resolution bottlenecks which are used by current state-of-the-art image-to-image methods. Therefore, in this work, we propose a novel deep hierarchical Image-to-Image Translation method, called DeepI2I. We learn a model by leveraging hierarchical features: (a) structural information contained in the shallow layers and (b) semantic information extracted from the deep layers. To enable the training of deep I2I models on small datasets, we propose a novel transfer learning method, that transfers knowledge from pre-trained GANs. Specifically, we leverage the discriminator of a pre-trained GANs (i.e. BigGAN or StyleGAN) to initialize both the encoder and the discriminator and the pre-trained generator to initialize the generator of our model. Applying knowledge transfer leads to an alignment problem between the encoder and generator. We introduce an adaptor network to address this. On many-class image-to-image translation on three datasets (Animal faces, Birds, and Foods) we decrease mFID by at least 35% when compared to the state-of-the-art. Furthermore, we qualitatively and quantitatively demonstrate that transfer learning significantly improves the performance of I2I systems, especially for small datasets. Finally, we are the first to perform I2I translations for domains with over 100 classes.
|
|
Kai Wang, Luis Herranz, Anjan Dutta, & Joost Van de Weijer. (2020). Bookworm continual learning: beyond zero-shot learning and continual learning. In Workshop TASK-CV 2020.
Abstract: We propose bookworm continual learning(BCL), a flexible setting where unseen classes can be inferred via a semantic model, and the visual model can be updated continually. Thus BCL generalizes both continual learning (CL) and zero-shot learning (ZSL). We also propose the bidirectional imagination (BImag) framework to address BCL where features of both past and future classes are generated. We observe that conditioning the feature generator on attributes can actually harm the continual learning ability, and propose two variants (joint class-attribute conditioning and asymmetric generation) to alleviate this problem.
|
|
Xialei Liu, Chenshen Wu, Mikel Menta, Luis Herranz, Bogdan Raducanu, Andrew Bagdanov, et al. (2020). Generative Feature Replay for Class-Incremental Learning. In CLVISION – Workshop on Continual Learning in Computer Vision.
Abstract: Humans are capable of learning new tasks without forgetting previous ones, while neural networks fail due to catastrophic forgetting between new and previously-learned tasks. We consider a class-incremental setting which means that the task-ID is unknown at inference time. The imbalance between old and new classes typically results in a bias of the network towards the newest ones. This imbalance problem can either be addressed by storing exemplars from previous tasks, or by using image replay methods. However, the latter can only be applied to toy datasets since image generation for complex datasets is a hard problem.
We propose a solution to the imbalance problem based on generative feature replay which does not require any exemplars. To do this, we split the network into two parts: a feature extractor and a classifier. To prevent forgetting, we combine generative feature replay in the classifier with feature distillation in the feature extractor. Through feature generation, our method reduces the complexity of generative replay and prevents the imbalance problem. Our approach is computationally efficient and scalable to large datasets. Experiments confirm that our approach achieves state-of-the-art results on CIFAR-100 and ImageNet, while requiring only a fraction of the storage needed for exemplar-based continual learning
|
|
Yaxing Wang, Abel Gonzalez-Garcia, David Berga, Luis Herranz, Fahad Shahbaz Khan, & Joost Van de Weijer. (2020). MineGAN: effective knowledge transfer from GANs to target domains with few images. In 33rd IEEE Conference on Computer Vision and Pattern Recognition.
Abstract: One of the attractive characteristics of deep neural networks is their ability to transfer knowledge obtained in one domain to other related domains. As a result, high-quality networks can be trained in domains with relatively little training data. This property has been extensively studied for discriminative networks but has received significantly less attention for generative models. Given the often enormous effort required to train GANs, both computationally as well as in the dataset collection, the re-use of pretrained GANs is a desirable objective. We propose a novel knowledge transfer method for generative models based on mining the knowledge that is most beneficial to a specific target domain, either from a single or multiple pretrained GANs. This is done using a miner network that identifies which part of the generative distribution of each pretrained GAN outputs samples closest to the target domain. Mining effectively steers GAN sampling towards suitable regions of the latent space, which facilitates the posterior finetuning and avoids pathologies of other methods such as mode collapse and lack of flexibility. We perform experiments on several complex datasets using various GAN architectures (BigGAN, Progressive GAN) and show that the proposed method, called MineGAN, effectively transfers knowledge to domains with few target images, outperforming existing methods. In addition, MineGAN can successfully transfer knowledge from multiple pretrained GANs.
|
|
Lu Yu, Bartlomiej Twardowski, Xialei Liu, Luis Herranz, Kai Wang, Yongmai Cheng, et al. (2020). Semantic Drift Compensation for Class-Incremental Learning of Embeddings. In 33rd IEEE Conference on Computer Vision and Pattern Recognition.
Abstract: Class-incremental learning of deep networks sequentially increases the number of classes to be classified. During training, the network has only access to data of one task at a time, where each task contains several classes. In this setting, networks suffer from catastrophic forgetting which refers to the drastic drop in performance on previous tasks. The vast majority of methods have studied this scenario for classification networks, where for each new task the classification layer of the network must be augmented with additional weights to make room for the newly added classes. Embedding networks have the advantage that new classes can be naturally included into the network without adding new weights. Therefore, we study incremental learning for embedding networks. In addition, we propose a new method to estimate the drift, called semantic drift, of features and compensate for it without the need of any exemplars. We approximate the drift of previous tasks based on the drift that is experienced by current task data. We perform experiments on fine-grained datasets, CIFAR100 and ImageNet-Subset. We demonstrate that embedding networks suffer significantly less from catastrophic forgetting. We outperform existing methods which do not require exemplars and obtain competitive results compared to methods which store exemplars. Furthermore, we show that our proposed SDC when combined with existing methods to prevent forgetting consistently improves results.
|
|
Yaxing Wang, Joost Van de Weijer, Lu Yu, & Shangling Jui. (2022). Distilling GANs with Style-Mixed Triplets for X2I Translation with Limited Data. In 10th International Conference on Learning Representations.
Abstract: Conditional image synthesis is an integral part of many X2I translation systems, including image-to-image, text-to-image and audio-to-image translation systems. Training these large systems generally requires huge amounts of training data.
Therefore, we investigate knowledge distillation to transfer knowledge from a high-quality unconditioned generative model (e.g., StyleGAN) to a conditioned synthetic image generation modules in a variety of systems. To initialize the conditional and reference branch (from a unconditional GAN) we exploit the style mixing characteristics of high-quality GANs to generate an infinite supply of style-mixed triplets to perform the knowledge distillation. Extensive experimental results in a number of image generation tasks (i.e., image-to-image, semantic segmentation-to-image, text-to-image and audio-to-image) demonstrate qualitatively and quantitatively that our method successfully transfers knowledge to the synthetic image generation modules, resulting in more realistic images than previous methods as confirmed by a significant drop in the FID.
|
|
Aitor Alvarez-Gila, Joost Van de Weijer, & Estibaliz Garrote. (2017). Adversarial Networks for Spatial Context-Aware Spectral Image Reconstruction from RGB. In 1st International Workshop on Physics Based Vision meets Deep Learning.
Abstract: Hyperspectral signal reconstruction aims at recovering the original spectral input that produced a certain trichromatic (RGB) response from a capturing device or observer.
Given the heavily underconstrained, non-linear nature of the problem, traditional techniques leverage different statistical properties of the spectral signal in order to build informative priors from real world object reflectances for constructing such RGB to spectral signal mapping. However,
most of them treat each sample independently, and thus do not benefit from the contextual information that the spatial dimensions can provide. We pose hyperspectral natural image reconstruction as an image to image mapping learning problem, and apply a conditional generative adversarial framework to help capture spatial semantics. This is the first time Convolutional Neural Networks -and, particularly, Generative Adversarial Networks- are used to solve this task. Quantitative evaluation shows a Root Mean Squared Error (RMSE) drop of 44:7% and a Relative RMSE drop of 47:0% on the ICVL natural hyperspectral image dataset.
|
|
Ivet Rafegas, & Maria Vanrell. (2017). Color representation in CNNs: parallelisms with biological vision. In ICCV Workshop on Mutual Benefits ofr Cognitive and Computer Vision.
Abstract: Convolutional Neural Networks (CNNs) trained for object recognition tasks present representational capabilities approaching to primate visual systems [1]. This provides a computational framework to explore how image features
are efficiently represented. Here, we dissect a trained CNN
[2] to study how color is represented. We use a classical methodology used in physiology that is measuring index of selectivity of individual neurons to specific features. We use ImageNet Dataset [20] images and synthetic versions
of them to quantify color tuning properties of artificial neurons to provide a classification of the network population.
We conclude three main levels of color representation showing some parallelisms with biological visual systems: (a) a decomposition in a circular hue space to represent single color regions with a wider hue sampling beyond the first
layer (V2), (b) the emergence of opponent low-dimensional spaces in early stages to represent color edges (V1); and (c) a strong entanglement between color and shape patterns representing object-parts (e.g. wheel of a car), objectshapes (e.g. faces) or object-surrounds configurations (e.g. blue sky surrounding an object) in deeper layers (V4 or IT).
|
|
Marc Masana, Joost Van de Weijer, Luis Herranz, Andrew Bagdanov, & Jose Manuel Alvarez. (2017). Domain-adaptive deep network compression. In 17th IEEE International Conference on Computer Vision.
Abstract: Deep Neural Networks trained on large datasets can be easily transferred to new domains with far fewer labeled examples by a process called fine-tuning. This has the advantage that representations learned in the large source domain can be exploited on smaller target domains. However, networks designed to be optimal for the source task are often prohibitively large for the target task. In this work we address the compression of networks after domain transfer.
We focus on compression algorithms based on low-rank matrix decomposition. Existing methods base compression solely on learned network weights and ignore the statistics of network activations. We show that domain transfer leads to large shifts in network activations and that it is desirable to take this into account when compressing.
We demonstrate that considering activation statistics when compressing weights leads to a rank-constrained regression problem with a closed-form solution. Because our method takes into account the target domain, it can more optimally
remove the redundancy in the weights. Experiments show that our Domain Adaptive Low Rank (DALR) method significantly outperforms existing low-rank compression techniques. With our approach, the fc6 layer of VGG19 can be compressed more than 4x more than using truncated SVD alone – with only a minor or no loss in accuracy. When applied to domain-transferred networks it allows for compression down to only 5-20% of the original number of parameters with only a minor drop in performance.
|
|
Xialei Liu, Joost Van de Weijer, & Andrew Bagdanov. (2017). RankIQA: Learning from Rankings for No-reference Image Quality Assessment. In 17th IEEE International Conference on Computer Vision.
Abstract: We propose a no-reference image quality assessment (NR-IQA) approach that learns from rankings (RankIQA). To address the problem of limited IQA dataset size, we train a Siamese Network to rank images in terms of image quality by using synthetically generated distortions for which relative image quality is known. These ranked image sets can be automatically generated without laborious human labeling. We then use fine-tuning to transfer the knowledge represented in the trained Siamese Network to a traditional CNN that estimates absolute image quality from single images. We demonstrate how our approach can be made significantly more efficient than traditional Siamese Networks by forward propagating a batch of images through a single network and backpropagating gradients derived from all pairs of images in the batch. Experiments on the TID2013 benchmark show that we improve the state-of-the-art by over 5%. Furthermore, on the LIVE benchmark we show that our approach is superior to existing NR-IQA techniques and that we even outperform the state-of-the-art in full-reference IQA (FR-IQA) methods without having to resort to high-quality reference images to infer IQA.
|
|
Hassan Ahmed Sial, S. Sancho, Ramon Baldrich, Robert Benavente, & Maria Vanrell. (2018). Color-based data augmentation for Reflectance Estimation. In 26th Color Imaging Conference (pp. 284–289).
Abstract: Deep convolutional architectures have shown to be successful frameworks to solve generic computer vision problems. The estimation of intrinsic reflectance from single image is not a solved problem yet. Encoder-Decoder architectures are a perfect approach for pixel-wise reflectance estimation, although it usually suffers from the lack of large datasets. Lack of data can be partially solved with data augmentation, however usual techniques focus on geometric changes which does not help for reflectance estimation. In this paper we propose a color-based data augmentation technique that extends the training data by increasing the variability of chromaticity. Rotation on the red-green blue-yellow plane of an opponent space enable to increase the training set in a coherent and sound way that improves network generalization capability for reflectance estimation. We perform some experiments on the Sintel dataset showing that our color-based augmentation increase performance and overcomes one of the state-of-the-art methods.
|
|
JW Xiao, CB Zhang, J. Feng, Xialei Liu, Joost Van de Weijer, & MM Cheng. (2023). Endpoints Weight Fusion for Class Incremental Semantic Segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 7204–7213).
Abstract: Class incremental semantic segmentation (CISS) focuses on alleviating catastrophic forgetting to improve discrimination. Previous work mainly exploit regularization (e.g., knowledge distillation) to maintain previous knowledge in the current model. However, distillation alone often yields limited gain to the model since only the representations of old and new models are restricted to be consistent. In this paper, we propose a simple yet effective method to obtain a model with strong memory of old knowledge, named Endpoints Weight Fusion (EWF). In our method, the model containing old knowledge is fused with the model retaining new knowledge in a dynamic fusion manner, strengthening the memory of old classes in ever-changing distributions. In addition, we analyze the relation between our fusion strategy and a popular moving average technique EMA, which reveals why our method is more suitable for class-incremental learning. To facilitate parameter fusion with closer distance in the parameter space, we use distillation to enhance the optimization process. Furthermore, we conduct experiments on two widely used datasets, achieving the state-of-the-art performance.
|
|
Yawei Li, Yulun Zhang, Radu Timofte, Luc Van Gool, Zhijun Tu, Kunpeng Du, et al. (2023). NTIRE 2023 challenge on image denoising: Methods and results. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (pp. 1904–1920).
Abstract: This paper reviews the NTIRE 2023 challenge on image denoising (σ = 50) with a focus on the proposed solutions and results. The aim is to obtain a network design capable to produce high-quality results with the best performance measured by PSNR for image denoising. Independent additive white Gaussian noise (AWGN) is assumed and the noise level is 50. The challenge had 225 registered participants, and 16 teams made valid submissions. They gauge the state-of-the-art for image denoising.
|
|