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Color-based Data Augmentation for Reflectance Estimation
H. Sial, S. Sancho-Asensio, R. Baldrich, R. Benavente, M. Vanrell
Computer Vision Center/ Universitat Autnoma de Barcelona; Bellaterra (Barcelona), Spain

Abstract
Deep convolutional architectures have shown to be successful
frameworks to solve generic computer vision problems. The es-
timation of intrinsic reflectance from single image is not a solved
problem yet. Encoder-Decoder architectures are a perfect ap-
proach for pixel-wise reflectance estimation, although it usually
suffers from the lack of large datasets. Lack of data can be par-
tially solved with data augmentation, however usual techniques
focus on geometric changes which does not help for reflectance
estimation. In this paper we propose a color-based data augmen-
tation technique that extends the training data by increasing the
variability of chromaticity. Rotation on the red-green blue-yellow
plane of an opponent space enable to increase the training set in a
coherent and sound way that improves network generalization ca-
pability for reflectance estimation. We perform some experiments
on the Sintel dataset showing that our color-based augmentation
increase performance and overcomes one of the state-of-the-art
methods.

Introduction
Intrinsic image decomposition is an inverse optics problem that
seeks to separately estimate light and material properties such as
shading, illumination, specularities or material reflectance from a
single image. Barrow and Tenenbaum [1] were the first to intro-
duce the decomposition of an image as the product of two intrinsic
terms, such as

Im(x,y) = Re(x,y) ·Sh(x,y), (1)

where image Im can be decomposed at each pixel (x,y) by the
product of the intrinsic Reflectance, Re, and Shading, Sh. This is
the basic model used in the majority of existing methods. A gener-
alization of this model to multiple intrinsic terms can be found in
[2]. Reflectance, or albedo, accounts for reflection of light from
object surface1 and it is material dependent only, while shading
represents reflection variation due to surface geometry, light po-
sition and inter-reflections. Such a decomposition is an ill-posed
problem as there are many possible solutions, that is why it is con-
sidered to be a challenging problem having applications in both
vision and graphics, where examples varies from recognition, to
segmentation, to shadow removal to re-rendering.

The classical approach to the problem was based on the as-
sumption that smooth changes in the image values were due to
shading variation whereas sharp changes were caused by differ-
ences on the reflectance of the surfaces in the scene. This assump-
tion, known as the Retinex assumption in the intrinsic decompo-
sition framework, was the basis of several early methods either

1Reflectance estimation in computer vision seeks to classify image
pixels in different colored materials from a single uncalibrated image,
without physical considerations of the true acquired material properties.

on greyscale images [3, 4, 5] or color images [6, 7]. Later works
added other constraints to the problem by assuming sparsity of
reflectances in the scene [8, 9], by adding priors on shape and il-
lumination [10], or by introducing color-based surface descriptors
[11].

After re-birth of convolution neural networks (CNN) in the
last years, this visual task is again getting researchers’ interest and
now the community is trying to solve it using the advantages of
computation power and flexibility of CNNs. In this new frame-
work, new problems arise, such as those related to the training
of these deep architectures that require the availability of large
datasets. Building datasets for this kind of application requires
a big effort on controlling lights, positioning, and careful selec-
tion of objects and their materials, which is only possible in lab-
oratory conditions like in the MIT dataset [12]. That becomes
even harder when thousands of images are needed. To solve this
handicap, alternative solutions are used, such as using synthetic
datasets where reflectance and shading ground truth can be easily
computed by the renderer [13], or using data augmentation tech-
niques that provide dataset extensions that can add value to the
training set, as in [14].

Data augmentation techniques focus on extending the train-
ing sets adding transformed versions of the own dataset images.
Usually, image transformations are based on geometric proper-
ties such as scaling, translation, spatial rotation, flipping, adding
noise, changing lighting or perspective conditions. In this work
we propose a new data augmentation technique based on color
to extend the dataset from a photometric point of view instead of
the classical geometric changes, which usually do not have any ef-
fect for reflectance estimation. We propose a color transformation
based on chromaticity rotation that fits with the constrains of the
reflectance estimation problem since it can be applied to the orig-
inal image and to reflectance without affecting shading. In what
follows we review some CNN architectures that have been used
to deal with reflectance estimation. Afterwards we explain our
color-based augmentation method and the CNN architecture we
have used in our experiments. Such architecture has been trained
on the Sintel dataset [13] that is the largest available. Finally, we
present the results showing that our color-based augmentation im-
proves the performance on the tested architecture and overcomes
the state of the art network on the dataset used.

Related works
Here we review deep learning architectures which have been pro-
posed for intrinsic image estimation using a single image as input.
Narihira et al. [15] were the first to introduce end-to-end multi-
scale deep regression networks to predict reflectance and shading
using a single image. Their two-stage architecture, inspired by
the work of [16], allows the network to learn features at both lo-
cal and global stages. First, the network learns features at coarse



level which on a later stage are merged with a second finer-scale
network. The last layers of the second network are divided in two
branches to learn reflectance and shading independently without
assuring the fulfillment of the basic intrinsic model definition of
Eq.1. All the layers of the network are fully convolutional making
it scale-invariant.

Shelhamer et al. [17] decompose a single image into depth,
shading and reflectance images. They first infer depth from the
input image using a fully convolutional network (FCN) [18] and
then decompose the input image and the estimated depth into re-
flectance and shading by joint optimization, similarly to what Bar-
ron and Malik [10] and Chen and Koltun [19] had previously done
using depth from Kinect. It is not an end-to-end architecture to
predict intrinsic images but it was the first approach to decom-
pose the input image into shape, shading and illumination.

Zhou et al. [20] used a deep network to predict relative re-
flectance between patches based on human annotated data and
then enforced energy minimization with a conditional random
field (CRF) to disintegrate the image in reflectance and shading.

Kim et al. [21] presented a joint convolution neural field
(JCNF) to jointly predict depth and intrinsic images from a single
image. JCNF design shares layers between depth, shading and
albedo pipelines and merge a gradient scale network for each task.

More recently, Shi and Dong introduced in [22] a large
dataset based on ShapeNet [23] models and trained a mirror-link
encoder-decoder CNN to predict reflectance, shading and specu-
lar components of images. It is the first deep-learning model not
based on the assumption of diffuse reflectance or Lambertian sur-
faces by considering Im(x,y) = Re(x,y) ·Sh(x,y)+Sp(x,y). The
proposed architecture has an encoder to progressively encode and
down-sample the features from the input image, and then three
separate decoders provide outputs for reflectance, shading and
specularities.

Lettry et al. [24] presented a deep residual network based on
the powerful and simple-to-train generative adversarial networks
(GAN) [25]. The network first predicts shading. Reflectance is
defined to be the element-wise division between the original im-
age and the shading. The interesting point of this approach is
the definition of the loss which considers a data term (difference
between estimations and ground truth), an edge energy term (dif-
ference between the gradients of estimations and ground truth),
and a perceptually-motivated adversarial term.

Most recently, Fan et al. [26] presented a modified CNN to
force reflectances surfaces to be uniform. It is based on the direct
intrinsic [15] work, adding a new pathway that extract the sen-
sitive areas where the output should be smooth. At the end they
apply a learn difussion operation to overcome the non uniformity
of the direct intrinsic output.

Finally, Baslamisli et al. [27] introduced a new synthetic
dataset based on ShapeNet [28] by assigning random color to
each homogeneous part of objects. They also introduced an ap-
proach based on two deep learning architectures with a new image
formation loss. The first network, called IntrinsicNet, is a tradi-
tional end-to-end encoder/decoder network. In the second one
they exploit the concept of classical Retinex theory. It is a net-
work trained in two stages. In the first stage they learn reflectance
and shading gradients. In the second stage, the network is used to
obtain the intrinsic decomposition by combining both the gradient
outputs of the first stage and the input image.

Color-based data augmentation
Deep convolutional architectures have become a flexible tool to
solve problems that has provoked methodological changes in the
design of computer vision solutions. One of these changes is that
important research interests have shifted from the design of the
solutions towards the setting of adequate experimental setups to
find the best hyper-parameters to reach best performances. As we
mentioned before, data augmentation in the training stage is one
of these methodological aspects that attracts some attention.

Here we propose a data augmentation technique that seeks
to extend the color diversity of datasets. It is based on the idea
that for any given image we can apply a chromaticity rotation
without affecting intensity. This is a transformation that in the in-
trinsic model affects reflectance but does not affect shading. This
chromatic change should be equally applied to the ground truth
reflectance and to the original image to hold the intrinsic decom-
position property. In this way we achieve an extension of the im-
age dataset from a photometric point of view instead of the most
common geometric extensions. This augmentation increases the
dataset color variability and we prove it increases the generaliza-
tion capabilities of the network architecture.

To this end we use an opponent-like (CieLab-like) transfor-
mation where intensity and chromaticity are separated. After-
wards, we apply a rotation on the plane formed by the red-green
and blue-yellow axes. The transform to this opponent space is a
linear transform on the RGB color space given by the following
equations:

O1 = (R+G+B−1.5)/1.5,
O2 = (R−G),
O3 = (R+G−2B)/2.

(2)

It is based on the one proposed by Platanoits et al. [29] but nor-
malizing and shifting the three axes within the range

[
− 1,1

]
.

This space was conceived to achieve certain physiological inspi-
ration on uncalibrated RGB, and has provided interesting results
in computer vision.

Augmentation can be reached by random rotations which are
computed on the O2-O3 plane, followed by a stretching transform,
denoted with the function S, that keeps the original contrast of the
image which could be reduced by the new range after the rotation

Oθ
2 = S(O2 cos(θ)+O3 sin(θ)),

Oθ
3 = S(O3 cos(θ)−O2 sin(θ)),

S(Oi) = (Oi−min(Oi)
max(Oθ

i )−min(Oθ
i )

maxOi−minOi
+min(Oθ

i ).

(3)

We can see an example of the effects of this chromaticity
rotation in figure 1, where we also can see how the transformation
holds the hypothesis of preserving the shading while changing
reflectance.

Experiments
In order to evaluate the effect of the proposed data augmentation
on the reflectance estimation problem we have selected a UNet-
like architecture proposed in [30] which has been trained on the
Sintel dataset [13]. In next sections we explain all the experimen-
tal details.



Figure 1. Example of chromaticity rotation for color-based augmentation.

CNN architecture
Reflectance estimation is a regression problem, which establishes
the sort of network architecture needed to tackle the problem.
Consequently, it needs the output to be of the same dimensions
as the input. One of the first proposals that successfully dealt
with this kind of pixel-wise architectures was Segnet [31], which
was applied to a segmentation task. It is based on an informa-
tion contracting stream followed by an expanding one with a final
softmax layer to produce a label per pixel. This contracting and
expanding scheme has been called encoder/decoder. The archi-
tecture in the contracting stream is a VGG16 network where the
fully connected layers have been removed, while the expanding
stream upsamples the input taking into account the indexed re-
sults in the corresponding pooling operation of its counterpart in
the contracting stream.

When the problem is segmentation, the lack of resolution
due to the upsampling is not as evident as in regression problems
where the output space presents a higher range of values. In our
case we have continuous values in a 3D color space. To overcome
this problem [32] proposed the U-Net architecture. They con-
catenated the upsampled version of a given layer with the before-
downsampling version of that layer in the encoding phase. An-
other mechanism to reduce the coarseness of the output is to intro-
duce hypercolumn information in the pipeline [33]. Given a pixel,
its hypercolumn is the concatenation of all the corresponding ac-
tivations at each convolutional layer. The mechanism up samples
the activation of its layer outputs, merging all of them without
any convolutional operation. Once the information is gathered,
the system applies a convolutional scheme to figure out how to
achieve the proper regression output. At the end, the system will
have two outputs that should recover the same reflectance from
different infromation sources. The final loss will weight the dif-
ferences between the groundtruth reflectance and the reflectances
on both outputs, decoder stream and the hyper-column process.

One last procedure to speed-up the operations and provide
more flexibility to the model is the substitution of the current con-
volutional layers by inception modules where the n×n filters are
substituted by n×1 and 1×n filters [34]

The three above-mentioned ideas have been recently com-
bined in the EURNet architecture proposed in [30] for reflectance
estimation. Figure 2 shows an schematic overview of the archi-
tecture used in our experiments.

Figure 2. EURNet architecture scheme. The number of channels is de-

picted on the top of each box. Reddish boxes are the encoding stream.

Green boxes are the decoding stream. Yellow boxes represent hyper-column

layers. Blue boxes represent the outputs, reflectance estimations that are go-

ing to be linked by the loss.

Datasets
Our Network is trained on MPI Sintel dataset [13] and we fol-
lowed the same methodology as in [15, 19] where they only used
the clean-pass images as final-pass images have some graphic ef-
fects and do not fulfill the property of Eq.1 which is an essential
condition. We used a total of 890 images, from 18 scenes having
50 frames each (one of the scenes has only 40 frames), and as pre-
vious works we used a two-fold cross validation, that means, our
network is trained on 50% of the images and tested on the rest,
this is called Image Split set. We also used the scene split intro-
duced in [15] where half of the scene are used for training and the
rest of scenes for testing.

Evaluation metrics
There are three usual metrics for performance evaluation in intrin-
sic image decomposition. Two of them are data-related metrics,
namely, the mean-squared error and the local mean-squared er-
ror, and the third is a perceptually-motivated metric, the structural
dissimilarity index.
Mean-squared error (MSE) measures the average of the squares
of the pixel-wise errors between the estimated reflectance and the
ground truth. As in previous works[12, 19, 15], we remove inten-
sity effects and compute MSE as:

MSE(x, x̂) =
N

∑
i=1

||xi− α̂ x̂i||2

N
, (4)

where N is the number of pixels in x, and α̂ = argminα ||xi −
α x̂i||2 is a parameter which adjusts the absolute brightness of the
estimation to minimize the error because the ground truth is only
defined up to a scale factor, that is, α̂ adds scale invariance to the
measure.
Local mean-squared error (LMSE) measures the average of the



scale-invariant MSE computed on overlapping square windows
of size 10% of the image size along its larger dimension. The
overlap between neighboring windows is 50%.
Structural dissimilarity index (DSSIM) is a distance metric de-
rived from structural similarity index (SSIM). SSIM characterizes
image similarity as perceived by human observers and accounts
for multiple independent structural and luminance differences. It
is defined by

SSIM(x, x̂) =
(2µµ̂ + c1)(2σxx̂ + c2)

(µ2 + µ̂2 + c1)(σ2 + σ̂2 + c2)
, (5)

where µ is the mean of x, µ̂ is the mean of x̂, σ2 is the variance of
x, σ̂2 is the variance of x̂, σxx̂ is the covariance between x and x̂. c1
and c2 stabilize the division when denominator approaches zero.
They depend on the dynamic range of the pixel-values.Based on
this definition of SSIM, DSSIM is defined as

DSSIM(x, x̂) =
1−SSIM(x, x̂)

2
. (6)

Experimental setup
Our implementation was based on Keras [35] with Theano

backend [36]. We used Adam to optimize the network with an
initial learning rate of 0.0002, which is updated with a factor of
0.1 when reaching a plateau. Our images were not cropped but
reduced to a resolution of 192× 448 and with a batch size of 8.
We used 5 dropout layers with 50% dropout rate at regular inter-
vals (more details are given in [30]). As the loss has to measure
the difference between the output and the real image, the back-
propagation will focus on isolated large errors if the MSE loss is
applied. Applying Huber loss alleviates this problem [37]. The
weights of the decoder and hyper-column losses are 0.8 and 0.2
respectively.

In order to evaluate the effects on the final performance of
our proposed color-based augmentation we performed a two-steps
experiment, first we trained EURNet from scratch and then it was
fine tunned adding color-based augmentation, we refer to this
trained version as EURNet+CA. On the test stage we only took
the output from the decoder stream. We used the same methodol-
ogy for both Image Split and Scene Split.

Results and Discussion
The results of our four experiments are summarized in tables 1
and 2. In the first one we show the performance of several pre-
vious methods as reported by Narihira et al. [15] and the per-
formance of the two networks we trained, EURNet and EUR-
Net+CA. This first table corresponds to the Image Split experi-
ment, providing the three usual metrics: MSE, LMSE and DSSIM
explained in a previous section. We can see that our data augmen-
tation clearly improves the performance with respect to EURNet
and overcomes Direct intrinsics [15] that, to the best of our knowl-
edge, is the state of the art on the Sintel dataset. This increase
happens for the three evaluated metrics.

In the second table (table 2) we show the results for the Scene
Split experiment. Again, we can see that color augmentation im-
proves EURNet on all metrics, although in this case we do not
achieve better results than Direct Intrinsics.

In figure 3 we show several examples obtained of the esti-
mated reflectances by the two trained networks EURNet and EU-
RNet+CA (figure 3.(c) and (d), respectively). Although both es-
timated reflectances still present some degree of blurring in the
edges we can see that edges and global color is better in (d) (see
the right side of girl hair in first row). Another improvement can
be seen in segments corresponding to the same reflectance. In
the bottom row we zoom some windows from previous images
in columns (b), (c) and (d), where we can better observe these
improvements. In figure 3.(e) the face skin is more homogeneous
for the EURNEt+CA estimation and in (f) color augmentation has
removed all the shading effects that appear in the EURNet esti-
mation. Finally, in (g) we can see that the reflectance of the dark
green foliage is also enhanced by the color augmentation.

Table 1. Quantitative results in the Image Split experiment
(×100), lower score is better.

Method MSE LMSE DSSIM
Baseline: reflectance constant 3.69 2.40 22.80
Retinex [12] 6.06 3.66 22.70
Lee et al. [38] 4.63 2.24 19.90
Barron et al. [10] 4.20 2.98 21.00
Chen and Koltun [19] 3.07 1.85 19.60
Direct intrinsics [15] 1.00 0.83 20.14
EURNet 1.09 0.836 21.85
EURNet+CA 0.77 0.65 19.05

Table 2. Quantitative results in the Scene Split experiment
(×100), lower score is better.

Method MSE LMSE DSSIM
Direct intrinsics [15] 2.01 1.31 20.73
EURNet 2.56 1.66 26.31
EURNet+CA 2.31 1.33 24.06

Conclusions
In this paper we present a new data augmentation technique based
on color changes instead of on the usual geometric transforma-
tions. We seek to overcome the problem of lack of data for train-
ing deep neuronal architectures for reflectance estimation. Our
proposal is based on a color transformation that changes image
chromaticity while preserving intensity and global contrast, these
properties perfectly fit for estimating intrinsic reflectance from a
single image. Augmentation can be randomly applied on the im-
age dataset, both on the image and the ground truth reflectance.

To evaluate the performance of the proposed approach we
performed several experiments on the Sintel dataset. We show
that our proposed augmentation noticeable increase the perfor-
mance overcoming the state of the art on this dataset.
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Figure 3. Reflectance estimation results on Sintel dataset. (a) and (b) are dataset original image and ground-truth reflectance respectively. (c) Estimated

reflectance with EURNet network. (d) Estimated reflectance with EURNet trained using our color-based augmentation. In bottom row some detail windows of

the previous images.
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