2018 |
|
Katerine Diaz, Francesc J. Ferri, & Aura Hernandez-Sabate. (2018). "An overview of incremental feature extraction methods based on linear subspaces " . Knowledge-Based Systems, 145, 219–235.
Abstract: With the massive explosion of machine learning in our day-to-day life, incremental and adaptive learning has become a major topic, crucial to keep up-to-date and improve classification models and their corresponding feature extraction processes. This paper presents a categorized overview of incremental feature extraction based on linear subspace methods which aim at incorporating new information to the already acquired knowledge without accessing previous data. Specifically, this paper focuses on those linear dimensionality reduction methods with orthogonal matrix constraints based on global loss function, due to the extensive use of their batch approaches versus other linear alternatives. Thus, we cover the approaches derived from Principal Components Analysis, Linear Discriminative Analysis and Discriminative Common Vector methods. For each basic method, its incremental approaches are differentiated according to the subspace model and matrix decomposition involved in the updating process. Besides this categorization, several updating strategies are distinguished according to the amount of data used to update and to the fact of considering a static or dynamic number of classes. Moreover, the specific role of the size/dimension ratio in each method is considered. Finally, computational complexity, experimental setup and the accuracy rates according to published results are compiled and analyzed, and an empirical evaluation is done to compare the best approach of each kind.
|
|
|
Katerine Diaz, Jesus Martinez del Rincon, Aura Hernandez-Sabate, & Debora Gil. (2018). "Continuous head pose estimation using manifold subspace embedding and multivariate regression " . IEEE Access, 6, 18325–18334.
Abstract: In this paper, a continuous head pose estimation system is proposed to estimate yaw and pitch head angles from raw facial images. Our approach is based on manifold learningbased methods, due to their promising generalization properties shown for face modelling from images. The method combines histograms of oriented gradients, generalized discriminative common vectors and continuous local regression to achieve successful performance. Our proposal was tested on multiple standard face datasets, as well as in a realistic scenario. Results show a considerable performance improvement and a higher consistence of our model in comparison with other state-of-art methods, with angular errors varying between 9 and 17 degrees.
Keywords: Head Pose estimation; HOG features; Generalized Discriminative Common Vectors; B-splines; Multiple linear regression
|
|
|
Katerine Diaz, Jesus Martinez del Rincon, Aura Hernandez-Sabate, Marçal Rusiñol, & Francesc J. Ferri. (2018). "Fast Kernel Generalized Discriminative Common Vectors for Feature Extraction " . Journal of Mathematical Imaging and Vision, 60(4), 512–524.
Abstract: This paper presents a supervised subspace learning method called Kernel Generalized Discriminative Common Vectors (KGDCV), as a novel extension of the known Discriminative Common Vectors method with Kernels. Our method combines the advantages of kernel methods to model complex data and solve nonlinear
problems with moderate computational complexity, with the better generalization properties of generalized approaches for large dimensional data. These attractive combination makes KGDCV specially suited for feature extraction and classification in computer vision, image processing and pattern recognition applications. Two different approaches to this generalization are proposed, a first one based on the kernel trick (KT) and a second one based on the nonlinear projection trick (NPT) for even higher efficiency. Both methodologies
have been validated on four different image datasets containing faces, objects and handwritten digits, and compared against well known non-linear state-of-art methods. Results show better discriminant properties than other generalized approaches both linear or kernel. In addition, the KGDCV-NPT approach presents a considerable computational gain, without compromising the accuracy of the model.
|
|
|
Marta Diez-Ferrer, Debora Gil, Cristian Tebe, & Carles Sanchez. (2018). "Positive Airway Pressure to Enhance Computed Tomography Imaging for Airway Segmentation for Virtual Bronchoscopic Navigation " . Respiration, 96(6), 525–534.
Abstract: Abstract
RATIONALE:
Virtual bronchoscopic navigation (VBN) guidance to peripheral pulmonary lesions is often limited by insufficient segmentation of the peripheral airways.
OBJECTIVES:
To test the effect of applying positive airway pressure (PAP) during CT acquisition to improve segmentation, particularly at end-expiration.
METHODS:
CT acquisitions in inspiration and expiration with 4 PAP protocols were recorded prospectively and compared to baseline inspiratory acquisitions in 20 patients. The 4 protocols explored differences between devices (flow vs. turbine), exposures (within seconds vs. 15-min) and pressure levels (10 vs. 14 cmH2O). Segmentation quality was evaluated with the number of airways and number of endpoints reached. A generalized mixed-effects model explored the estimated effect of each protocol.
MEASUREMENTS AND MAIN RESULTS:
Patient characteristics and lung function did not significantly differ between protocols. Compared to baseline inspiratory acquisitions, expiratory acquisitions after 15 min of 14 cmH2O PAP segmented 1.63-fold more airways (95% CI 1.07-2.48; p = 0.018) and reached 1.34-fold more endpoints (95% CI 1.08-1.66; p = 0.004). Inspiratory acquisitions performed immediately under 10 cmH2O PAP reached 1.20-fold (95% CI 1.09-1.33; p < 0.001) more endpoints; after 15 min the increase was 1.14-fold (95% CI 1.05-1.24; p < 0.001).
CONCLUSIONS:
CT acquisitions with PAP segment more airways and reach more endpoints than baseline inspiratory acquisitions. The improvement is particularly evident at end-expiration after 15 min of 14 cmH2O PAP. Further studies must confirm that the improvement increases diagnostic yield when using VBN to evaluate peripheral pulmonary lesions.
Keywords: Multidetector computed tomography; Bronchoscopy; Continuous positive airway pressure; Image enhancement; Virtual bronchoscopic navigation
|
|
2017 |
|
Debora Gil, Sergio Vera, Agnes Borras, Albert Andaluz, & Miguel Angel Gonzalez Ballester. (2017). "Anatomical Medial Surfaces with Efficient Resolution of Branches Singularities " . Medical Image Analysis, 35, 390–402.
Abstract: Medial surfaces are powerful tools for shape description, but their use has been limited due to the sensibility existing methods to branching artifacts. Medial branching artifacts are associated to perturbations of the object boundary rather than to geometric features. Such instability is a main obstacle for a condent application in shape recognition and description. Medial branches correspond to singularities of the medial surface and, thus, they are problematic for existing morphological and energy-based algorithms. In this paper, we use algebraic geometry concepts in an energy-based approach to compute a medial surface presenting a stable branching topology. We also present an ecient GPU-CPU implementation using standard image processing tools. We show the method computational eciency and quality on a custom made synthetic database. Finally, we present some results on a medical imaging application for localization of abdominal pathologies.
Keywords: Medial Representations; Shape Recognition; Medial Branching Stability ; Singular Points
|
|
|
Katerine Diaz, Jesus Martinez del Rincon, & Aura Hernandez-Sabate. (2017). "Decremental generalized discriminative common vectors applied to images classification " . Knowledge-Based Systems, 131, 46–57.
Abstract: In this paper, a novel decremental subspace-based learning method called Decremental Generalized Discriminative Common Vectors method (DGDCV) is presented. The method makes use of the concept of decremental learning, which we introduce in the field of supervised feature extraction and classification. By efficiently removing unnecessary data and/or classes for a knowledge base, our methodology is able to update the model without recalculating the full projection or accessing to the previously processed training data, while retaining the previously acquired knowledge. The proposed method has been validated in 6 standard face recognition datasets, showing a considerable computational gain without compromising the accuracy of the model.
Keywords: Decremental learning; Generalized Discriminative Common Vectors; Feature extraction; Linear subspace methods; Classification
|
|
|
Marta Diez-Ferrer, Debora Gil, Elena Carreño, Susana Padrones, & Samantha Aso. (2017). Positive Airway Pressure-Enhanced CT to Improve Virtual Bronchoscopic Navigation . Journal of Thoracic Oncology, 12(1S), S596–S597.
Abstract: A main weakness of virtual bronchoscopic navigation (VBN) is unsuccessful segmentation of distal branches approaching peripheral pulmonary nodules (PPN). CT scan acquisition protocol is pivotal for segmentation covering the utmost periphery. We hypothesize that application of continuous positive airway pressure (CPAP) during CT acquisition could improve visualization and segmentation of peripheral bronchi. The purpose of the present pilot study is to compare quality of segmentations under 4 CT acquisition modes: inspiration (INSP), expiration (EXP) and both with CPAP (INSP-CPAP and EXP-CPAP).
Keywords: Thorax CT; diagnosis; Peripheral Pulmonary Nodule
|
|
|
Marta Diez-Ferrer, Debora Gil, Elena Carreño, Susana Padrones, Samantha Aso, Vanesa Vicens, et al. (2017). "Positive Airway Pressure-Enhanced CT to Improve Virtual Bronchoscopic Navigation " . European Respiratory Journal, .
|
|
|
Mireia Sole, Joan Blanco, Debora Gil, G. Fonseka, Richard Frodsham, Francesca Vidal, et al. (2017). "Noves perspectives en l estudi de la territorialitat cromosomica de cel·lules germinals masculines: estudis tridimensionals " . Biologia de la Reproduccio, 15, 73–78.
Abstract: In somatic cells, chromosomes occupy specific nuclear regions called chromosome territories which are involved in the
maintenance and regulation of the genome. Preliminary data in male germ cells also suggest the importance of chromosome
territoriality in cell functionality. Nevertheless, the specific characteristics of testicular tissue (presence of different
cell types with different morphological characteristics, in different stages of development and with different ploidy)
makes difficult to achieve conclusive results. In this study we have developed a methodology to approach the threedimensional
study of all chromosome territories in male germ cells from C57BL/6J mice (Mus musculus). The method
includes the following steps: i) Optimized cell fixation to obtain an optimal preservation of the three-dimensionality cell
morphology, ii) Chromosome identification by FISH (Chromoprobe Multiprobe® OctoChrome™ Murine System; Cytocell)
and confocal microscopy (TCS-SP5, Leica Microsystems), iii) Cell type identification by immunofluorescence
iv) Image analysis using Matlab scripts, v) Numerical data extraction related to chromosome features, chromosome
radial position and chromosome relative position. This methodology allows the unequivocally identification and the
analysis of the chromosome territories of all spermatogenic stages. Results will provide information about the features
that determine chromosomal position, preferred associations between chromosomes, and the relationship between chromosome
positioning and genome regulation.
|
|
|
Mireia Sole, Joan Blanco, Debora Gil, G. Fonseka, Richard Frodsham, Oliver Valero, et al. (2017)." Análisis 3d de la territorialidad cromosómica en células espermatogénicas: explorando la infertilidad desde un nuevo prisma" . Revista Asociación para el Estudio de la Biología de la Reproducción, 22(2), 105.
|
|