2012 |
|
Sergio Vera, Debora Gil, Agnes Borras, F. Javier Sanchez, Frederic Perez, Marius G. Linguraru, et al. (2012). "Computation and Evaluation of Medial Surfaces for Shape Representation of Abdominal Organs " In H. Yoshida et al (Ed.), Workshop on Computational and Clinical Applications in Abdominal Imaging (Vol. 7029, 223–230). Lecture Notes in Computer Science. Berlin: Springer Link.
Abstract: Medial representations are powerful tools for describing and parameterizing the volumetric shape of anatomical structures. Existing methods show excellent results when applied to 2D
objects, but their quality drops across dimensions. This paper contributes to the computation of medial manifolds in two aspects. First, we provide a standard scheme for the computation of medial
manifolds that avoid degenerated medial axis segments; second, we introduce an energy based method which performs independently of the dimension. We evaluate quantitatively the performance of our
method with respect to existing approaches, by applying them to synthetic shapes of known medial geometry. Finally, we show results on shape representation of multiple abdominal organs,
exploring the use of medial manifolds for the representation of multi-organ relations.
Keywords: medial manifolds, abdomen.
Cite Key: VGB2012
|
|
|
Sergio Vera, Debora Gil, Antonio Lopez, & Miguel Angel Gonzalez Ballester. (2012). "Multilocal Creaseness Measure " . The Insight Journal, .
Abstract: This document describes the implementation using the Insight Toolkit of an algorithm for detecting creases (ridges and valleys) in N-dimensional images, based on the Local Structure Tensor of the image. In addition to the filter used to calculate the creaseness image, a filter for the computation of the structure tensor is also included in this submission.
Keywords: Ridges, Valley, Creaseness, Structure Tensor, Skeleton,
Cite Key: VGL2012
|
|
|
Sergio Vera, Miguel Angel Gonzalez Ballester, & Debora Gil. (2012). "A medial map capturing the essential geometry of organs " In ISBI Workshop on Open Source Medical Image Analysis software (1691 - 1694). IEEE.
Abstract: Medial representations are powerful tools for describing and parameterizing the volumetric shape of anatomical structures. Accurate computation of one pixel wide medial surfaces is mandatory. Those surfaces must represent faithfully the geometry of the volume. Although morphological methods produce excellent results in 2D, their complexity and quality drops across dimensions, due to a more complex description of pixel neighborhoods. This paper introduces a continuous operator for accurate and efficient computation of medial structures of arbitrary dimension. Our experiments show its higher performance for medical imaging applications in terms of simplicity of medial structures and capability for reconstructing the anatomical volume
Keywords: Medial Surface Representation, Volume Reconstruction,Geometry , Image reconstruction , Liver , Manifolds , Shape , Surface morphology , Surface reconstruction
Cite Key: VGG2012
|
|
|
Sergio Vera, Miguel Angel Gonzalez Ballester, & Debora Gil. (2012). "Optimal Medial Surface Generation for Anatomical Volume Representations " In MichaelW. David and Vannier H. and H. Yoshida (Ed.), Abdominal Imaging. Computational and Clinical Applications (Vol. 7601, pp. 265–273). Lecture Notes in Computer Science. Springer Berlin Heidelberg.
Abstract: Medial representations are a widely used technique in abdominal organ shape representation and parametrization. Those methods require good medial manifolds as a starting point. Any medial
surface used to parametrize a volume should be simple enough to allow an easy manipulation and complete enough to allow an accurate reconstruction of the volume. Obtaining good quality medial
surfaces is still a problem with current iterative thinning methods. This forces the usage of generic, pre-calculated medial templates that are adapted to the final shape at the cost of a drop in volume reconstruction.
This paper describes an operator for generation of medial structures that generates clean and complete manifolds well suited for their further use in medial representations of abdominal organ volumes. While being simpler than thinning surfaces, experiments show its high performance in volume reconstruction and preservation of medial surface main branching topology.
Keywords: Medial surface representation; volume reconstruction
Cite Key: VGG2012b
|
|
2011 |
|
Aura Hernandez-Sabate, Debora Gil, David Roche, Monica M. S. Matsumoto, & Sergio S. Furuie. (2011). "Inferring the Performance of Medical Imaging Algorithms " In Pedro Real, Daniel Diaz-Pernil, Helena Molina-Abril, Ainhoa Berciano, & Walter Kropatsch (Eds.), 14th International Conference on Computer Analysis of Images and Patterns (Vol. 6854, pp. 520–528). L. Berlin: Springer-Verlag Berlin Heidelberg.
Abstract: Evaluation of the performance and limitations of medical imaging algorithms is essential to estimate their impact in social, economic or clinical aspects. However, validation of medical imaging techniques is a challenging task due to the variety of imaging and clinical problems involved, as well as, the difficulties for systematically extracting a reliable solely ground truth. Although specific validation protocols are reported in any medical imaging paper, there are still two major concerns: definition of standardized methodologies transversal to all problems and generalization of conclusions to the whole clinical data set.
We claim that both issues would be fully solved if we had a statistical model relating ground truth and the output of computational imaging techniques. Such a statistical model could conclude to what extent the algorithm behaves like the ground truth from the analysis of a sampling of the validation data set. We present a statistical inference framework reporting the agreement and describing the relationship of two quantities. We show its transversality by applying it to validation of two different tasks: contour segmentation and landmark correspondence.
Keywords: Validation, Statistical Inference, Medical Imaging Algorithms.
Cite Key: HGR2011
|
|
|
Aura Hernandez-Sabate, Debora Gil, Jaume Garcia, & Enric Marti. (2011). "Image-based Cardiac Phase Retrieval in Intravascular Ultrasound Sequences " . IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 58(1), 60–72.
Abstract: Longitudinal motion during in vivo pullbacks acquisition of intravascular ultrasound (IVUS) sequences is a major artifact for 3-D exploring of coronary arteries. Most current techniques are based on the electrocardiogram (ECG) signal to obtain a gated pullback without longitudinal motion by using specific hardware or the ECG signal itself. We present an image-based approach for cardiac phase retrieval from coronary IVUS sequences without an ECG signal. A signal reflecting cardiac motion is computed by exploring the image intensity local mean evolution. The signal is filtered by a band-pass filter centered at the main cardiac frequency. Phase is retrieved by computing signal extrema. The average frame processing time using our setup is 36 ms. Comparison to manually sampled sequences encourages a deeper study comparing them to ECG signals.
Keywords: 3-D exploring; ECG; band-pass filter; cardiac motion; cardiac phase retrieval; coronary arteries; electrocardiogram signal; image intensity local mean evolution; image-based cardiac phase retrieval; in vivo pullbacks acquisition; intravascular ultrasound sequences; longitudinal motion; signal extrema; time 36 ms; band-pass filters; biomedical ultrasonics; cardiovascular system; electrocardiography; image motion analysis; image retrieval; image sequences; medical image processing; ultrasonic imaging
User Groups: ivus
Cite Key: HGB2011
|
|
|
Carles Sanchez. (2011). "Tracheal ring detection in bronchoscopy " (F. J. S. Debora Gil, Ed.) (Vol. 168). Master's thesis, , .
Abstract: Endoscopy is the process in which a camera is introduced inside a human.
Given that endoscopy provides realistic images (in contrast to other modalities) and allows non-invase minimal intervention procedures (which can aid in diagnosis and surgical interventions), its use has spreaded during last decades.
In this project we will focus on bronchoscopic procedures, during which the camera is introduced through the trachea in order to have a diagnostic of the patient. The diagnostic interventions are focused on: degree of stenosis (reduction in tracheal area), prosthesis or early diagnosis of tumors. In the first case, assessment of the luminal area and the calculation of the diameters of the tracheal rings are required. A main limitation is that all the process is done by hand,
which means that the doctor takes all the measurements and decisions just by looking at the screen. As far as we know there is no computational framework for helping the doctors in the diagnosis.
This project will consist of analysing bronchoscopic videos in order to extract useful information for the diagnostic of the degree of stenosis. In particular we will focus on segmentation of the tracheal rings. As a result of this project several strategies (for detecting tracheal rings) had been implemented in order to compare their performance.
Keywords: Bronchoscopy, tracheal ring, segmentation
Cite Key: San2011
|
|
|
David Roche, Debora Gil, & Jesus Giraldo. (2011). "Using statistical inference for designing termination conditions ensuring convergence of Evolutionary Algorithms " In 11th European Conference on Artificial Life.
Abstract: A main challenge in Evolutionary Algorithms (EAs) is determining a termination condition ensuring stabilization close to the optimum in real-world applications. Although for known test functions distribution-based quantities are good candidates (as far as suitable parameters are used), in real-world problems an open question still remains unsolved. How can we estimate an upper-bound for the termination condition value ensuring a given accuracy for the (unknown) EA solution?
We claim that the termination problem would be fully solved if we defined a quantity (depending only on the EA output) behaving like the solution accuracy. The open question would be, then, satisfactorily answered if we had a model relating both quantities, since accuracy could be predicted from the alternative quantity. We present a statistical inference framework addressing two topics: checking the correlation between the two quantities and defining a regression model for predicting (at a given confidence level) accuracy values from the EA output.
Cite Key: RGG2011b
|
|
|
David Roche, Debora Gil, & Jesus Giraldo. (2011). "An inference model for analyzing termination conditions of Evolutionary Algorithms " In 14th Congrès Català en Intel·ligencia Artificial (pp. 216–225).
Abstract: In real-world problems, it is mandatory to design a termination condition for Evolutionary Algorithms (EAs) ensuring stabilization close to the unknown optimum. Distribution-based quantities are good candidates as far as suitable parameters are used. A main limitation for application to real-world problems is that such parameters strongly depend on the topology of the objective function, as well as, the EA paradigm used.
We claim that the termination problem would be fully solved if we had a model measuring to what extent a distribution-based quantity asymptotically behaves like the solution accuracy. We present a regression-prediction model that relates any two given quantities and reports if they can be statistically swapped as termination conditions. Our framework is applied to two issues. First, exploring if the parameters involved in the computation of distribution-based quantities influence their asymptotic behavior. Second, to what extent existing distribution-based quantities can be asymptotically exchanged for the accuracy of the EA solution.
Keywords: Evolutionary Computation Convergence, Termination Conditions, Statistical Inference
Cite Key: RGG2011
|
|
|
Debora Gil, Agnes Borras, Manuel Ballester, Francesc Carreras, Ruth Aris, Manuel Vazquez, et al. (2011). "MIOCARDIA: Integrating cardiac function and muscular architecture for a better diagnosis " In Association for Computing Machinery (Ed.), 14th International Symposium on Applied Sciences in Biomedical and Communication Technologies. Barcelona, Spain.
Abstract: Deep understanding of myocardial structure of the heart would unravel crucial knowledge for clinical and medical procedures. The MIOCARDIA project is a multidisciplinary project in cooperation with l'Hospital de la Santa Creu i de Sant Pau, Clinica la Creu Blanca and Barcelona Supercomputing Center. The ultimate goal of this project is defining a computational model of the myocardium. The model takes into account the deep interrelation between the anatomy and the mechanics of the heart. The paper explains the workflow of the MIOCARDIA project. It also introduces a multiresolution reconstruction technique based on DT-MRI streamlining for simplified global myocardial model generation. Our reconstructions can restore the most complex myocardial structures and provides evidences of a global helical organization.
Cite Key: GGB2011
|
|