2012 |
|
Alberto Hidalgo, Ferran Poveda, Enric Marti, Debora Gil, Albert Andaluz, Francesc Carreras, et al. (2012). "Evidence of continuous helical structure of the cardiac ventricular anatomy assessed by diffusion tensor imaging magnetic resonance multiresolution tractography " . European Radiology, 3(1), 361–362.
Abstract: Deep understanding of myocardial structure linking morphology and func- tion of the heart would unravel crucial knowledge for medical and surgical clinical procedures and studies. Diffusion tensor MRI provides a discrete measurement of the 3D arrangement of myocardial fibres by the observation of local anisotropic
diffusion of water molecules in biological tissues. In this work, we present a multi- scale visualisation technique based on DT-MRI streamlining capable of uncovering additional properties of the architectural organisation of the heart. Methods and Materials: We selected the John Hopkins University (JHU) Canine Heart Dataset, where the long axis cardiac plane is aligned with the scanner’s Z- axis. Their equipment included a 4-element passed array coil emitting a 1.5 T. For DTI acquisition, a 3D-FSE sequence is apply. We used 200 seeds for full-scale tractography, while we applied a MIP mapping technique for simplified tractographic reconstruction. In this case, we reduced each DTI 3D volume dimensions by order- two magnitude before streamlining.
Our simplified tractographic reconstruction method keeps the main geometric features of fibres, allowing for an easier identification of their global morphological disposition, including the ventricular basal ring. Moreover, we noticed a clearly visible helical disposition of the myocardial fibres, in line with the helical myocardial band ventricular structure described by Torrent-Guasp. Finally, our simplified visualisation with single tracts identifies the main segments of the helical ventricular architecture.
DT-MRI makes possible the identification of a continuous helical architecture of the myocardial fibres, which validates Torrent-Guasp’s helical myocardial band ventricular anatomical model.
User Notes: JCR: 3.594, Q1 (18/113)
Cite Key: HPM2012
|
|
|
Aura Hernandez-Sabate, & Debora Gil. (2012). "The Benefits of IVUS Dynamics for Retrieving Stable Models of Arteries " In Yasuhiro Honda (Ed.), Intravascular Ultrasound (pp. 185–206). Intech.
|
|
|
Carles Sanchez, F. Javier Sanchez, Antoni Rosell, & Debora Gil. (2012). "An illumination model of the trachea appearance in videobronchoscopy images " In Image Analysis and Recognition (Vol. 7325, pp. 313–320). Lecture Notes in Computer Science. Springer Berlin Heidelberg.
Abstract: Videobronchoscopy is a medical imaging technique that allows interactive navigation inside the respiratory pathways. This imaging modality provides realistic images and allows non-invasive minimal intervention procedures. Tracheal procedures are routinary interventions that require assessment of the percentage of obstructed pathway for injury (stenosis) detection. Visual assessment in videobronchoscopic sequences requires high expertise of trachea anatomy and is prone to human error.
This paper introduces an automatic method for the estimation of steneosed trachea percentage reduction in videobronchoscopic images. We look for tracheal rings , whose deformation determines the degree of obstruction. For ring extraction , we present a ring detector based on an illumination and appearance model. This model allows us to parametrise the ring detection. Finally, we can infer optimal estimation parameters for any video resolution.
Keywords: Bronchoscopy, tracheal ring, stenosis assesment, trachea appearance model, segmentation
Cite Key: SSR2012
|
|
|
David Roche, Debora Gil, & Jesus Giraldo. (2012). "Assessing agonist efficacy in an uncertain Em world " In A. Christopoulus and M. Bouvier (Ed.), 40th Keystone Symposia on mollecular and celular biology (79). Keystone Symposia.
Abstract: The operational model of agonism has been widely used for the analysis of agonist action since its formulation in 1983. The model includes the Em parameter, which is defined as the maximum response of the system. The methods for Em estimation provide Em values not significantly higher than the maximum responses achieved by full agonists. However, it has been found that that some classes of compounds as, for instance, superagonists and positive allosteric modulators can increase the full agonist maximum response, implying upper limits for Em and thereby posing doubts on the validity of Em estimates. Because of the correlation between Em and operational efficacy, τ, wrong Em estimates will yield wrong τ estimates.
In this presentation, the operational model of agonism and various methods for the simulation of allosteric modulation will be analyzed. Alternatives for curve fitting will be presented and discussed.
Cite Key: RGG2012
|
|
|
Debora Gil, Agnes Borras, Ruth Aris, Mariano Vazquez, Pierre Lafortune, & Guillame Houzeaux. (2012). "What a difference in biomechanics cardiac fiber makes " In Statistical Atlases And Computational Models Of The Heart: Imaging and Modelling Challenges (Vol. 7746, pp. 253–260). Springer Berlin Heidelberg.
Abstract: Computational simulations of the heart are a powerful tool for a comprehensive understanding of cardiac function and its intrinsic relationship with its muscular architecture. Cardiac biomechanical models require a vector field representing the orientation of cardiac fibers. A wrong orientation of the fibers can lead to a
non-realistic simulation of the heart functionality. In this paper we explore the impact of the fiber information on the simulated biomechanics of cardiac muscular anatomy. We have used the John Hopkins database to perform a biomechanical simulation using both a synthetic benchmark fiber distribution and the data obtained experimentally from DTI. Results illustrate how differences in fiber orientation affect heart deformation along cardiac cycle.
Cite Key: GBA2012
|
|
|
Ferran Poveda, Enric Marti, Debora Gil, Francesc Carreras, & Manel Ballester. (2012). "Helical Structure of Ventricular Anatomy by Diffusion Tensor Cardiac MR Tractography " . Journal of American College of Cardiology, 5(7), 754–755.
Abstract: It is widely accepted that myocardial fiber architecture plays a critical role in myocardial contractility and relaxation (1). However, there is a lack of consensus about the distribution of the myocardial fibers and their spatial arrangement in the left and right ventricles. An understanding of the cardiac architecture should benefit the ventricular functional assessment, left ventricular reconstructive surgery planning, or resynchronization therapy in heart failure. Researchers have proposed several conceptual models to describe the architecture of the heart, ranging from gross dissection to histological presentation. The cardiac mesh model (2) proposes that the myocytes are arranged longitudinally and radially change their angulation along the myocardial depth. By contrast, the helical ventricular myocardial model states that the ventricular myocardium is a continuous anatomical helical layout of myocardial fibers (1
Cite Key: PMG2012
|
|
|
Ferran Poveda, Debora Gil, & Enric Marti. (2012). "Multi-resolution DT-MRI cardiac tractography " In Statistical Atlases And Computational Models Of The Heart: Imaging and Modelling Challenges (Vol. 7746, pp. 270–277). Springer Berlin Heidelberg.
Abstract: Even using objective measures from DT-MRI no consensus about myocardial architecture has been achieved so far. Streamlining provides good reconstructions at low level of detail, but falls short to give global abstract interpretations. In this paper, we present a multi-resolution methodology that is able to produce simplified representations of cardiac architecture. Our approach produces a reduced set of tracts that are representative of the main geometric features of myocardial anatomical structure. Experiments show that fiber geometry is preserved along reductions, which validates the simplified model for interpretation of cardiac architecture.
Cite Key: PGM2012b
|
|
|
Francesc Carreras, Jaume Garcia, Debora Gil, Sandra Pujadas, Chi ho Lion, R.Suarez-Arias, et al. (2012). "Left ventricular torsion and longitudinal shortening: two fundamental components of myocardial mechanics assessed by tagged cine-MRI in normal subjects " . International Journal of Cardiovascular Imaging, 28(2), 273–284.
Abstract: Cardiac magnetic resonance imaging (Cardiac MRI) has become a gold standard diagnostic technique for the assessment of cardiac mechanics, allowing the non-invasive calculation of left ventric- ular long axis longitudinal shortening (LVLS) and absolute myocardial torsion (AMT) between basal and apical left ventricular slices, a movement directly related to the helicoidal anatomic disposition of the myocardial fibers. The aim of this study is to determine AMT and LVLS behaviour and normal values from a group of healthy subjects. A group of 21 healthy volunteers (15 males) (age: 23–55 y.o., mean:30.7 ± 7.5) were prospectively included in an obser- vational study by Cardiac MRI. Left ventricular rotation (degrees) was calculated by custom-made software (Harmonic Phase Flow) in consecutive LV short axis planes tagged cine-MRI sequences. AMT was determined from the difference between basal and apical planes LV rotations. LVLS (%) was determined from the LV longitudinal and horizontal axis cine-MRI images. All the 21 cases studied were interpretable, although in three cases the value of the LV apical rotation could not be determined. The mean rotation of the basal and apical planes at end-systole were -3.71° ± 0.84° and 6.73° ± 1.69° (n:18) respectively, resulting in a LV mean AMT of 10.48° ± 1.63° (n:18). End-systolic mean LVLS was 19.07 ± 2.71%. Cardiac MRI allows for the calculation of AMT and LVLS, fundamental functional components of the ventricular twist mechanics conditioned, in turn, by the anatomical helical layout of the myocardial fibers. These values provide complementary information about systolic ventricular function in relation to the traditional parameters used in daily practice.
Keywords: Magnetic resonance imaging (MRI); Tagging MRI; Cardiac mechanics; Ventricular torsion
Cite Key: CGG2011
|
|
|
Patricia Marquez, Debora Gil, & Aura Hernandez-Sabate. (2012). "Error Analysis for Lucas-Kanade Based Schemes " In 9th International Conference on Image Analysis and Recognition (Vol. 7324, pp. 184–191). Lecture Notes in Computer Science. Springer-Verlag Berlin Heidelberg.
Abstract: Optical flow is a valuable tool for motion analysis in medical imaging sequences. A reliable application requires determining the accuracy of the computed optical flow. This is a main challenge given the absence of ground truth in medical sequences. This paper presents an error analysis of Lucas-Kanade schemes in terms of intrinsic design errors and numerical stability of the algorithm. Our analysis provides a confidence measure that is naturally correlated to the accuracy of the flow field. Our experiments show the higher predictive value of our confidence measure compared to existing measures.
Keywords: Optical flow, Confidence measure, Lucas-Kanade, Cardiac Magnetic Resonance
Cite Key: MGH2012
|
|
|
Patricia Marquez, Debora Gil, & Aura Hernandez-Sabate. (2012). "A Complete Confidence Framework for Optical Flow " In Rita Cucchiara V. M. Andrea Fusiello (Ed.), 12th European Conference on Computer Vision – Workshops and Demonstrations (Vol. 7584, pp. 124–133). Florence, Italy, October 7-13, 2012: Springer-Verlag.
Abstract: Medial representations are powerful tools for describing and parameterizing the volumetric shape of anatomical structures. Existing methods show excellent results when applied to 2D objects, but their quality drops across dimensions. This paper contributes to the computation of medial manifolds in two aspects. First, we provide a standard scheme for the computation of medial manifolds that avoid degenerated medial axis segments; second, we introduce an energy based method which performs independently of the dimension. We evaluate quantitatively the performance of our method with respect to existing approaches, by applying them to synthetic shapes of known medial geometry. Finally, we show results on shape representation of multiple abdominal organs, exploring the use of medial manifolds for the representation of multi-organ relations.
Keywords: Optical flow, confidence measures, sparsification plots, error prediction plots
Cite Key: MGH2012b
|
|