|
Meysam Madadi, Sergio Escalera, Alex Carruesco Llorens, Carlos Andujar, Xavier Baro, & Jordi Gonzalez. (2018). Top-down model fitting for hand pose recovery in sequences of depth images. IMAVIS - Image and Vision Computing, 79, 63–75.
Abstract: State-of-the-art approaches on hand pose estimation from depth images have reported promising results under quite controlled considerations. In this paper we propose a two-step pipeline for recovering the hand pose from a sequence of depth images. The pipeline has been designed to deal with images taken from any viewpoint and exhibiting a high degree of finger occlusion. In a first step we initialize the hand pose using a part-based model, fitting a set of hand components in the depth images. In a second step we consider temporal data and estimate the parameters of a trained bilinear model consisting of shape and trajectory bases. We evaluate our approach on a new created synthetic hand dataset along with NYU and MSRA real datasets. Results demonstrate that the proposed method outperforms the most recent pose recovering approaches, including those based on CNNs.
|
|
|
Yagmur Gucluturk, Umut Guclu, Xavier Baro, Hugo Jair Escalante, Isabelle Guyon, Sergio Escalera, et al. (2018). Multimodal First Impression Analysis with Deep Residual Networks. TAC - IEEE Transactions on Affective Computing, 8(3), 316–329.
Abstract: People form first impressions about the personalities of unfamiliar individuals even after very brief interactions with them. In this study we present and evaluate several models that mimic this automatic social behavior. Specifically, we present several models trained on a large dataset of short YouTube video blog posts for predicting apparent Big Five personality traits of people and whether they seem suitable to be recommended to a job interview. Along with presenting our audiovisual approach and results that won the third place in the ChaLearn First Impressions Challenge, we investigate modeling in different modalities including audio only, visual only, language only, audiovisual, and combination of audiovisual and language. Our results demonstrate that the best performance could be obtained using a fusion of all data modalities. Finally, in order to promote explainability in machine learning and to provide an example for the upcoming ChaLearn challenges, we present a simple approach for explaining the predictions for job interview recommendations
|
|
|
Ester Fornells, Manuel De Armas, Maria Teresa Anguera, Sergio Escalera, Marcos Antonio Catalán, & Josep Moya. (2018). Desarrollo del proyecto del Consell Comarcal del Baix Llobregat “Buen Trato a las personas mayores y aquellas en situación de fragilidad con sufrimiento emocional: Hacia un envejecimiento saludable”. Informaciones Psiquiatricas, 47–59.
|
|
|
Hugo Jair Escalante, Victor Ponce, Sergio Escalera, Xavier Baro, Alicia Morales-Reyes, & Jose Martinez-Carranza. (2017). Evolving weighting schemes for the Bag of Visual Words. Neural Computing and Applications - Neural Computing and Applications, 28(5), 925–939.
Abstract: The Bag of Visual Words (BoVW) is an established representation in computer vision. Taking inspiration from text mining, this representation has proved
to be very effective in many domains. However, in most cases, standard term-weighting schemes are adopted (e.g.,term-frequency or TF-IDF). It remains open the question of whether alternative weighting schemes could boost the
performance of methods based on BoVW. More importantly, it is unknown whether it is possible to automatically learn and determine effective weighting schemes from
scratch. This paper brings some light into both of these unknowns. On the one hand, we report an evaluation of the most common weighting schemes used in text mining, but rarely used in computer vision tasks. Besides, we propose an evolutionary algorithm capable of automatically learning weighting schemes for computer vision problems. We report empirical results of an extensive study in several computer vision problems. Results show the usefulness of the proposed method.
Keywords: Bag of Visual Words; Bag of features; Genetic programming; Term-weighting schemes; Computer vision
|
|
|
Cristina Palmero, Jordi Esquirol, Vanessa Bayo, Miquel Angel Cos, Pouya Ahmadmonfared, Joan Salabert, et al. (2017). Automatic Sleep System Recommendation by Multi-modal RBG-Depth-Pressure Anthropometric Analysis. IJCV - International Journal of Computer Vision, 122(2), 212–227.
Abstract: This paper presents a novel system for automatic sleep system recommendation using RGB, depth and pressure information. It consists of a validated clinical knowledge-based model that, along with a set of prescription variables extracted automatically, obtains a personalized bed design recommendation. The automatic process starts by performing multi-part human body RGB-D segmentation combining GrabCut, 3D Shape Context descriptor and Thin Plate Splines, to then extract a set of anthropometric landmark points by applying orthogonal plates to the segmented human body. The extracted variables are introduced to the computerized clinical model to calculate body circumferences, weight, morphotype and Body Mass Index categorization. Furthermore, pressure image analysis is performed to extract pressure values and at-risk points, which are also introduced to the model to eventually obtain the final prescription of mattress, topper, and pillow. We validate the complete system in a set of 200 subjects, showing accurate category classification and high correlation results with respect to manual measures.
Keywords: Sleep system recommendation; RGB-Depth data Pressure imaging; Anthropometric landmark extraction; Multi-part human body segmentation
|
|