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Abstract The Bag of Visual Words (BoVW) is an

established representation in computer vision. Taking

inspiration from text mining, this representation has proved

to be very effective in many domains. However, in most

cases, standard term-weighting schemes are adopted (e.g.,

term-frequency or TF-IDF). It remains open the question of

whether alternative weighting schemes could boost the

performance of methods based on BoVW. More impor-

tantly, it is unknown whether it is possible to automatically

learn and determine effective weighting schemes from

scratch. This paper brings some light into both of these

unknowns. On the one hand, we report an evaluation of the

most common weighting schemes used in text mining, but

rarely used in computer vision tasks. Besides, we propose

an evolutionary algorithm capable of automatically learn-

ing weighting schemes for computer vision problems. We

report empirical results of an extensive study in several

computer vision problems. Results show the usefulness of

the proposed method.

Keywords Bag of Visual Words � Bag of features �
Genetic programming � Term-weighting schemes �
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1 Introduction

The Bag of Visual Words (BoVW) is a widely adopted

representation for describing the content of images and

videos in computer vision problems [42]. This representa-

tion is the analogy of the Bag of Words (BoW) represen-

tation used in text mining and information retrieval: BoVW

accounts for the presence and absence of prototypical

patterns (called visual words, and playing the role of words

in text processing) that are obtained from training images.

This representation has obtained outstanding results in a

large number of scenarios [3, 5, 9, 13, 30, 35, 42, 43, 50].

In spite of its effectiveness and popularity, most

implementations of BoVW adopt pretty standard weighting

schemes, that is, the mechanisms that determine the con-

tribution that visual words have for describing the content

of images and videos. For instance, the most common

scheme is term-frequency where the BoVW representation

is an histogram that accounts for the occurrences of visual

words in the image or video. Although competitive
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performance has been obtained with this formulation, we

think it is worth studying alternative weighting schemes.

This paper explores the suitability of using alternative

term-weighting schemes for image and video representa-

tion. On the one hand, we report an evaluation of the most

common weighting schemes used in text mining, but rarely

used for computer vision tasks. Our study comprises

unsupervised and supervised weighting schemes. More

importantly, we propose an evolutionary algorithm capable

of automatically learning weighting schemes for computer

vision problems from scratch. The evolutionary algorithm

explores the search space of possible weighting schemes

that can be generated by combining a set of primitives with

the aim of maximizing the classification/recognition per-

formance. We perform experiments in landmark problems

in computer vision, namely image categorization (different

subsets of the Caltech-101 data set [16]), gesture recogni-

tion (the newly introduced Montalbano data set [15]),

action recognition (MSRDaily3D Data [47]), places-scene

recognition (the well known 15-scenes [30]), insect and

bird classification [29, 31] and adult image classification

[49]. Experimental results show the effectiveness of the

proposed method.

A previous version of this work was published in [12].

Compared to that work, this paper provides a more detailed

explanation and motivation for the proposed approach.

Furthermore, we extend the experimental evaluation by

including additional data sets that correspond to other

domains not explored previously. Finally, we also perform

a deeper analysis on the resulting weighting schemes.

The remainder of this paper is organized as follows.

Next section introduces the BoVW representation and

reviews-related work. Section 3 presents common and

alternative weighting schemes that have been adopted in

text mining and information retrieval but that have not

been used in computer vision. Section 4 describes in detail

the proposed methodology for evolving weighting

schemes. Next, Sect. 5 reports experimental results.

Finally, Sect. 6 outlines conclusions and future work

directions.

2 BoVW representation

In text mining and information retrieval, the BoW repre-

sentation is a way to represent documents as numerical

vectors, with the aim that such vectorial space captures

information about their semantics and content [40]. The

idea is to represent a document by a vector of length equal

to the number of terms (e.g., words) in the vocabulary

associated with the corpus under analysis. Each element in

that vector indicates the relevance/importance of the cor-

responding term for describing the content of the

document. Although the BoW makes strong assumptions

(e.g., that word order is not important), it is still one of the

most used representations nowadays.1

Under the BoW, the ith document is represented by a

vector di ¼ hxi;1; . . .; xi;jVji, where xi;j is a scalar that indi-

cates the importance of the term tj for describing the

content of the ith document; V is the vocabulary, i.e., the

set of different words in the corpus. The way in which xi;j is

estimated is given by the so-called term-weighting scheme.

There are many ways of defining xi;j in the text mining and

information retrieval literature. Usually, xi;j carries infor-

mation about both: term-document relevance (TDR) and

term-relevance (TR). The former, explicitly measures the

relevance of a term for a document, i.e., it captures local

information. The most common TDR is the term-frequency

(TF) weight, which indicates the number of times a term

occurs in a document. On the other hand, TR aims to

capture relevance of terms for the task at hand, i.e., global

information. The most common TR is the inverse-docu-

ment-frequency (IDF), which penalizes terms occurring

frequently across the whole corpus. Usually, xi;j combines

one TDR and one TR weight.

Perhaps the most common combination is the TF �
IDF weighting scheme [1, 42]. Although this is the stan-

dard scheme, for some tasks this may not be the best

choice. For instance, in supervised learning tasks, we have

information of labels for training samples. However,

standard schemes disregard this useful information. This is

due to the fact that traditional schemes were originally

proposed for information retrieval (an unsupervised prob-

lem) [38, 39]. Because of this, recently supervised

weighting schemes have been proposed in the text mining

community [7].

The success of the bag of words representation in the

natural language processing domain has inspired

researchers in computer vision as well, and currently the

BoVW is among the most used representations for images

and videos [3, 5, 9, 20, 28, 30, 35, 42, 43, 50]. In fact, this

formulation has trespassed the image and text boundaries,

and it has been used for representing audio [34], time series

[46], accelerometer [19] signals, etc. In the computer vision

analogy, under the BoVW, an image is represented by a

vector indicating the importance of visual words for

describing the content of the image. In this scenario, a

visual word is a prototypical visual pattern that summarizes

the information of other visual descriptors extracted from

training images. More specifically, the vocabulary of visual

words is typically learned by clustering visual descriptors

extracted from training images. The centers of the resultant

1 One should note the text mining community has proposed variants

that aim to soften such assumptions, e.g., using n-grams [2], still the

BoW is very competitive with such formulations.
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clusters are considered as visual words. Commonly, visual

descriptors (e.g., SIFT or HOG) are extracted from points

or regions of interest, see [20, 50] for comprehensive

descriptions of the BoVW representation.

The effectiveness of the BoVW representation depends

on a number of factors, including the interest-point-detec-

tion phase, the choice of visual descriptor, the clustering

step, and the choice of learning algorithm for the modeling

task (e.g., classification) [50]. A factor that has not been

deeply studied is the role the term-weighting scheme plays.

As in text mining, commonly term-frequency or Boolean

term-weighting schemes are considered. Despite the fact

these schemes have reported acceptable performance in

many tasks (including tasks from natural language pro-

cessing), it is worth asking ourselves whether alternative

schemes can result in better performance. To the best of

our knowledge, the only work that aims at exploring this

issue is the work by Tirilly et al. [43]. The authors compare

the performance of different term-weighting schemes for

image retrieval. They considered the most common

schemes from information retrieval and provide a com-

prehensive comparative study. In our work, we focus on

classification/recognition tasks and consider weighting

schemes specifically designed for classification tasks:

supervised weighting schemes. In this paper, we aim to

answer such question throughout an extensive experimental

evaluation. In addition, we propose a genetic programming

algorithm to learn weighting schemes by combining a set

of primitives. One should note that there are efforts for

improving the BoVW in several directions, most notably,

great advances have been obtained for incorporating spa-

tio-temporal information [3, 22, 30, 32, 35]. The term-

weighting schemes developed in this work can also be

applied in those scenarios.

Term-weighting learning with evolutionary algorithms

has been studied within information retrieval and text

categorization domains [6, 11, 18]. In [6], authors learn

information retrieval weighting schemes with genetic pro-

gramming. They aim to combine a few primitives trying to

maximize average precision. In [11, 18], authors use

genetic programming for learning weighting schemes for

text classification tasks. This work focuses on learning

weighting schemes for computer vision tasks.

3 Common and alternative weighting schemes

As explained above, perhaps the most used weighting

scheme for information retrieval and text mining tasks is

the so-called TF � IDF [1, 39]. Although good results

have been reported in many applications with it, alternative

weighting schemes have been proposed aiming to capture

additional or problem-specific information with the goal of

improving retrieval or classification performance [1, 7, 26,

44]. For instance, for text classification tasks, supervised

term-weighting schemes have been proposed [7, 26]. These

alternatives aim at incorporating discriminative informa-

tion into the representation by defining TR weights that

account for the discriminative power of terms. For

instance, by replacing the IDF term (in the TF � IDF

scheme) by a discriminative term IG (the information gain

of the term), resulting in a TF � IG scheme. Common and

alternative weighting schemes are described in Table 1.

The first three weighting schemes in Table 1 are common

in text mining and information retrieval, and their usage

dates back to the 80s [38], being the Boolean scheme the

simplest one (only accounting for the occurrence of terms).

On the other hand, the last three schemes were proposed in

the last decade and still are not well known within text

mining. To the best of our knowledge, these alternative

weighting schemes have not been evaluated in the context of

computer vision (see Sect. refsec:bow). Therefore, a first

contribution of this paper is to assess the suitability of such

schemes for computer vision problems. The next section

introduces our evolutionary algorithm for learning term-

weighting schemes for the BoVW.

4 Evolving visual-word weighting schemes

In addition to the evaluation of non-traditional weighting

schemes in computer vision, a second contribution of this

work is the proposal of an evolutionary algorithm capable

of automatically determining new weighting schemes from

scratch. Our proposal is motivated by the following

observations. First, we observe that traditional weighting

schemes were proposed by researchers based on their own

expertise, biases, and needs. Also, so far, it has been the

norm to use the same weighting scheme for every data set

under analysis. In fact, in computer vision tasks, the

weighting scheme is rarely considered a factor that can

have an impact on the performance of models based on the

BoVW formulation.

In this paper, we address the question of whether the

weighting scheme design process can be automated by

employing evolutionary algorithms. Our proposed method

uses genetic programming to learn how to combine a set of

TDR/TR primitives with the aim of obtaining a weighting

scheme that optimizes classification performance. This

term-weighting-scheme learning formulation removes, to

some extent, designers biases and does not rely on user

expertise.2 Instead, weighting schemes are sought such that

2 Please note that traditional weighting schemes have been proposed

by researchers based on their own experiences and biases, making

strong assumptions and relying on intuition.
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they maximize the performance in the task under analysis.

Hence, our automatic technique allows us to learn tailored

schemes for every data set/task being approached.

Figure 1 presents a general diagram of the proposed

approach. A set of primitives is extracted from the BoVW

representation of training images. These primitives are

obtained by counting visual words occurrence statistics.

Next, they feed a genetic program that learns how to

combine such primitives to generate a term-weighting

scheme. The output of the genetic program is a way to

represent images that has been learned automatically. Next,

both training and test images are represented according to

the learned scheme and, finally, a predictive model is

learned and their performance evaluated. The remainder of

this section describes our proposed method.

4.1 Genetic programming

Our solution to learn term-weighting schemes is based on

Genetic Programming (GP) [27]. GP is an evolutionary

algorithm, that is an optimization algorithm inspired by

biological evolutionary systems. In evolutionary algo-

rithms, solutions to the problem at hand are seen as indi-

viduals that interact among them and with the environment

(the search space) in such a way that the survival of the

population is sought (optimization criterion). The general

flow of a typical evolutionary algorithm is shown in Fig. 2:

an initial population of solutions/individuals is created

(randomly or by a pre-defined criterion), after that, indi-

viduals are selected, recombined,3 mutated and then placed

back into the solutions’ pool, this process is repeated for a

given number of generations and the algorithm returns the

best individual found.

The main distinctive feature of GP, when compared to

other evolutionary algorithms, is that in GP, nonlinear and

complex data structures are used to represent solutions (in-

dividuals). For instance, the most common representations

for individuals in GP are trees and graphs, whereas for most

of evolutionary algorithms, numerical vectors are used. This

feature of GP makes it appropriate for facing very complex

problems, in most cases related to modeling tasks. This is

one of the reasons for which we adopted GP for learning

weighting schemes. Nevertheless, the main motivation for

using GP for our problem is that we are interested in

learning a function that tells us how to combine the different

primitives (including the decision of telling which primitives

are worth to combine). In this scenario, GP provides a nat-

ural solution to the problem, encoding candidate functions as

individuals (i.e., trees) and searching for the best one.

Clearly, this problem cannot be approached with either

traditional optimization or heuristic optimization techniques.

4.2 GP for term-weighting scheme learning

Our approach to generate weighting schemes uses genetic

programming to learn how to combine a set of primitives

that have been used for building weighting schemes in the

past (see Fig. 1). That is, we devise a genetic program that

searches for the combination of primitives that maximizes

the classification performance of the task under analysis

(e.g., image classification). A standard tree representation

is adopted in which leafs correspond to primitives and non-

terminal nodes correspond to operators by which primitives

can be combined; in such a way that the evaluation of a tree

leads to a term-weighting scheme (see Fig. 3).

Therefore, under this formulation, we explore the search

space of weighting schemes that can be coded by the trees,

where, common/alternative weighting schemes are included

in the search space. The remainder of the section elaborates on

the different components of the proposed genetic program.

Table 1 Weighting schemes used in text mining and information retrieval

Acr. Name Formula Description References

B Boolean xi;j ¼ 1f#ðti ;djÞ[ 0g Prescense/abscense of terms [38]

TF Term-frequency xi;j ¼ #ðti; djÞ Frequency of occurrence of terms [38]

TF–IDF TF-inverse doc. freq. xi;j ¼ #ðti; djÞ � logð N
df ðtjÞÞ TF penalizing corpus-based frequency [38]

TF–IG TF-information gain xi;j ¼ #ðti; djÞ � IGðtjÞ TF times term information gain [7]

TF–CHI TF-Chi-square xi;j ¼ #ðti; djÞ � CHIðtjÞ TF times v2 term-relevance [7]

TF–RF TF-relevance freq. xi;j ¼ #ðti; djÞ � logð2þ TP
maxð1;TNÞÞ TF times RF relevance [26]

For every scheme, xi;j indicates how relevant the term tj is for describing the content of the ith document under the corresponding weighting

scheme. N is the number of documents in training data set, #ðdi; tjÞ indicates the frequency of term tj in the ith document, df ðtjÞ is document

frequency of the term tj, i.e., the number of documents in which term tj occurs, IGðtjÞ is the information gain of term tj, CHIðtjÞ is the v2 statistic
for term tj, and TP, TN are the true-positive and true-negative rates for term tj (i.e., number of positive, respectively, negative, documents that

contain term tj)

3 Please note that in GP, for each individual, either mutation or

crossover is performed each time, but not both. This is different from

other variants like genetic algorithms.
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4.2.1 Representation

As mentioned in Sect. 3, weighting schemes are mainly

composed out of two type of factors: TDR an TR weights,

which determine the importance of terms into documents

and the relevance of terms themselves, respectively.

Accordingly, the proposed method uses as terminals TDR

and TR primitives (together with useful constants and other

weighting schemes), which can be combined by a prede-

fined set of operators. An individual (i.e., solution) in the

genetic program is thus a tree formed by these terminals

and operators, where the evaluation of the tree leads to a

term-weighting scheme. Figure 3 depicts a typical indi-

vidual and the resultant weighting scheme.

The set of terminals considered in this work is shown in

Table 2, whereas for the operators (non-terminals) we

considered the function set shown in Table 3.

Each terminal inTable 2 is amatrix of sizeN � jV j. TDRs
are themselves matrices of that dimensions, but TRs are row

vectors of length |V| (i.e., they indicate the relevance of each

Fig. 1 General diagram of the proposed approach

Fig. 2 A generic evolutionary algorithm

Fig. 3 Adopted representation for individuals. Dashed nodes repre-

sent operators (taken from the function set) and solid-line nodes

indicate terminals; below the tree we show the term-weighting

scheme derived from it
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term). To make all matrices comparable (and henceforth

suitable for combination under the function set F ), TRs are

converted into matrices by repeating the row vector N times.

Therefore, all of the operators in the function set act on a

scalar basis, that is, they are applied element-by-element. It

is worth mentioning that for supervised TR factors, we use

information extracted from training images only; i.e., no

supervised information is used from the test set.

The initial population is generated with the ramped half-

half strategy, which means that half of the population is

created with the full method (i.e., all trees have the same

deep, maxdepth) and the other half is created with the grow

method (i.e., trees have deep of at most maxdepth), see [27]

for details.

4.2.2 Fitness function

The goal of our genetic programming formulation is to

obtain a weighting scheme that maximizes classification

performance. Therefore, the goodness/fitness of each

solution should be tied to the classification performance of

a model using the representation induced by the weighting

scheme. Specifically, given a solution to the problem, we

first evaluate the tree to generate a weighting scheme using

the training set, as shown in Fig. 3. Once training docu-

ments are represented by the corresponding weighting

scheme, we perform a k�fold cross-validation procedure,

using a given classifier, to assess the effectiveness of the

solution. In k�fold cross-validation, the training set is split

into k disjoint subsets, and k rounds of training and testing

are performed; in each round k � 1 subsets are used as

training set and 1 subset is used for testing, the process is

repeated k times using a different subset for testing each

time. The average classification performance is used as the

fitness function.

In particular, we evaluate the performance of classifi-

cation models with the f1 measure. Let TP, FP and FN to

denote the true positives, false-positives and false-negative

rates for a particular class, precision (Prec) is defined as
TP

TPþFP
and recall (Rec) as TP

TPþFN
. f1-measure is simply the

Table 2 Terminal set
Variable Meaning

W1 N, constant matrix, number of training documents

W2 kVk, constant matrix, number of terms

W3 CHI, matrix containing in each row the vector of v2 weights for the terms

W4 IG, matrix containing in each row the vector of information gain weights for the terms

W5 TF-IDF, matrix with the TF-IDF term-weighting scheme

W6 TF, matrix containing the TF term-weighting scheme

W7 FGT, matrix containing in each row the global term-frequency for all terms

W8 TP, matrix containing in each row the vector of true positives for all terms

W9 FP, matrix containing in each row the vector of false positives

W10 TN, matrix containing in each row the vector of true negatives

W11 FN, matrix containing in each row the vector of false negatives

W12 Accuracy, matrix where each row contains the accuracy obtained when using the term as

classifier

W13 Accuracy Balance, matrix containing the AC_Balance each (term, class)

W14 Bi-normal separation, BNS, an array that contains the value for each BNS per (term, class)

W15 DFreq, document frequency matrix containing the value for each (term, class)

W16 FMeasure, F-measure matrix containing the value for each (term, class)

W17 OddsRatio, an array containing the OddsRatio term-weighting

W18 Power, matrix containing the Power value for each (term, class)

W19 ProbabilityRatio, matrix containing the probabilityRatio each (term, class)

W20 Max Term, Matrix containing the vector with the highest repetition for each term

W21 RF, matrix containing the RF vector

W22 TF � RF, matrix containing TF � RF

Table 3 Considered function set for the genetic program

Operator Name Arity

þ Addition 2

� Substraction 2

� Product 2

/ Division (protected) 2

log2 x Logarithm b-2 1
ffiffiffi

x
p

Square root 1

x2 Square power 1
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harmonic average between precision and recall:

f1 ¼ 2�Prec�Rec
PrecþRec

. The average across classes is reported (also

called, macro-average f1), this way of estimating the f1-

measure is known to be particularly useful when tackling

unbalanced data sets.

Because under the fitness function k models have to be

trained and tested for the evaluation of a single solution, we

need to look for an efficient classification model. We

considered Support Vector Machines (SVM) as they can

deal naturally with the sparseness and high dimensionality

of data. However, training and testing an SVM can be a

time-consuming process. Therefore, we opted for efficient

implementations of SVMs that have been proposed

recently [10, 51]. Those methods are trained online and

under the scheme of learning with a budget. We use the

predictions of an SVM as the fitness function for learning

term-weighting schemes (TWS). Among the methods

available in [10], we used the low-rank linearized SVM

(LLSMV) [51]. LLSVM is a linearized version of nonlin-

ear SVMs, which can be trained efficiently with the so-

called block minimization framework [4]. We selected

LLSVM instead of alternative methods because this

method has outperformed several other efficient imple-

mentations of SVMs (see [10, 51]). Thus, we use this

approximated SVM during the fitness function. Once a

weighting scheme has been learned, however, we use a

deterministic SVM to classify the test set. This is to make

results comparable and discard the randomness inherent to

the approximate solutions.

4.2.3 Genetic operators

The proposed genetic program follows a standard proce-

dure as depicted in Fig. 2. We use the implementation from

[41], which considers standard operators for crossover and

mutation. Specifically, subtree crossover is considered

where, given two parent trees, an intermediate node is

randomly selected within each tree. Then, the subtrees

below the selected nodes are interchanged between the

parents, giving rise to two offspring. The mutation operator

is quite standard as well, it consists of identifying a node

within the parent tree and replacing the node with another

randomly selected (terminals replaced by terminals and

non-terminals replaced by operators in F ).

4.3 Final remarks

After the evolutionary process finishes, the genetic pro-

gram returns a term-weighting scheme. Next, training and

test images are represented according to this scheme. A

classifier is learned using the training representation and its

performance evaluated in the test representation. For this

evaluation, we consider a deterministic SVM (from the

CLOP toolbox [37]), and hence, results are comparable to

each other. The next section reports experimental results on

several computer vision tasks obtained with learned

weighting schemes.

5 Experiments and results

This section presents experimental results that aim at

showing the effectiveness of the proposed methodology for

learning term-weighting schemes in a variety of computer

vision tasks. First, we describe the experimental settings

and then report results of our study.

5.1 Experimental settings

For experimentation, we considered standard data sets

associated with landmark computer vision tasks. The

considered data sets are described in Table 4. All of these

data sets are associated with classification/recognition

tasks, hence the same evaluation protocol (with slight

variations described below for each data set) was adopted.

For all but one data set, we generated training and test

partitions4; the exception was the MSRDaily3D data set for

which we report average performance over fivefold cross-

validation, see below.

In every data set, the training partition was used both to

obtain the visual vocabulary and to learn the term-

weighting schemes with the genetic program, recall the

program maximizes the f1 measure under k�fold cross-

validation. For evaluating the performance of the different

weighting schemes, both, training and test images are

represented with the schemes (either learned or prede-

fined). Then, a classification model is learned using train-

ing images and the performance of the model is evaluated

in test images.

Unless otherwise stated, we used the VLFEAT toolbox

for processing images [45]. We considered PHOW5

(Pyramid Histogram Of Visual Words) features as visual

descriptors [3].

Regarding our proposed genetic program for term-

weighting learning, the average and standard deviation

performance of 5 runs is reported. The method was run in

all cases for 50 generations with a population of 500

individuals. This is a very standard choice for GP [27],

where it is common to use large number of individuals and

4 Matlab files with the predefined partitions are publicly available

under request.
5 PHOW is an extension to the raw BoVW formulation that aims at

incorporating spatial information by means of a pyramidal structure,

see [3] for details.
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a small number of generations. Default values were used

for the remainder of GP parameters: generational selection

mechanism with elitism, lexictour parent selection [33],

crossover probability of 0.9, and mutation probability of

0.1.

Because the optimization process may be too time-

consuming for some data sets, we learned the weighting

schemes by using subsets of the original training sets:

• Only samples belonging to a subset of classes were

used. In some cases, the vocabulary was also reduced,

see Table 4 column 6.

• The selection of classes was done randomly; while the

vocabulary reduction used a frequency criterion (the

most frequent terms were retained).

Despite this reductions, at the end of the search process, all

of the data and classes are considered for training the final

classifier and evaluation. We emphasize that during the

search process we use an approximate SVM for computing

the fitness function. When evaluating the performance of

weighting schemes in test set, we used a deterministic

linear SVM. Specific details and considerations for each

data set are reported below.

Finally, for comparing the statistical-significance of

differences we used a Wilcoxon signed-rank test (as rec-

ommended in [8]), with a 0.05 confidence level.

5.1.1 Caltech-101

Caltech-101 [16] is a mandatory benchmark for image

classification. It contains objects that belong to 101 dif-

ferent categories (102 including the background category).

Sample images from this data set are provided in Fig. 4.

For experiments we considered three subsets: tiny,

101-15 and 101-30. Tiny considers 5 out 102 classes

with 15 images per-class for training and 15 for testing;

data set 101-15 considers the 102 classes with 15 train-

ing and 15 testing images (per-class); finally, data set

101-30 considers the 102 classes with 30 images for

training and 30 for testing. Using 3 subsets of Caltech-

101 allows us to evaluate the performance of our method

for similar categorization problems but with different

complexities in terms of the number of categories and

samples. In fact, we use these subsets of Caltech-101 to

assess the generality capabilities of the proposed

approach, see below. For tiny, we used all of the samples

during the optimization process, whereas for the other

two data sets we used examples from 10 category classes

and the background only, where the top 3000 terms

where considered.

5.1.2 Birds and butterflies

We also considered two data sets related to animal

recognition: birds and butterflies. Figure 5 shows sample

images from these data sets. In both cases, the problem is

to distinguish birds/butterflies species. Contrary to Cal-

tech-101, these data sets comprise more fine-grained

classification problems. Therefore, these data sets com-

prise a major challenge because instances of different

classes may be very similar. For these data sets, we rep-

resented images under the BoW using a Discrete Cosine

Transform (DCT) descriptor. This choice is based on

previous work in the same data sets [32]. For both data

sets, we used 90 percent of images for training and 10

percent of images for testing.

Table 4 Data sets considered

for experimentation
Data set Classes jVj # Train # Test Imagesjterms

Image categorization

Caltech-tiny 5 12,000 75 75 15|12000

Caltech-102 (15) 101 12,000 1530 1530 165|3000

Caltech-102 (30) 101 12,000 3060 3060 330|3000

Birds 6 400 540 60 540|400

Butterflies 7 400 552 67 552|400

Action recognition

MSRDaily3D 12 600 192 48 192|600

Gesture recognition

Montalbano 20 1000 6850 3579 2055|600

Scene recognition

15 Scenes 101 12,000 1475 3010 1475|2000

Pornographic image filtering

Adult 101 12,000 6808 1702 6808|2000

Column 6 shows the number of images|terms (i.e., size of the visual vocabulary) considered during the

search process
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5.1.3 Adult image filtering

A data set for adult image filtering was considered as well.

The data were made available by [9], and it has been

previously used in several publications, see [9, 49]. The

data set contains images belonging to five categories,

where there is one category for inoffensive images and four

categories of increasing level of adultness: lightly dressed,

partly nude, nude and pornographic, see Fig. 6.

The goal in this task is to associate images with its

correct category in such a way that the administrator of a

filtering system can decide the level of restriction in the

type of images users can have access to (e.g., photographs

of lightly dressed persons may be allowed in most sites,

even in schools, but nude persons and pornography may be

objectionable in most sites). About 80% of images were

used as training set and the remainder as test set, as in [9].

5.1.4 Scene recognition

We consider a benchmark data set for scene recognition [30].

The data set comprises 15 indoor/outdoor categories, where

images contain complex scenes. Figure 7 shows sample images

from this data set, clearly this is a very challenging task. For this

data set, we used the same partitioning proposed in [30]: 100

images per category for training and the rest for testing.

5.1.5 Montalbano

The BoVW has been used to represent videos as well, see

e.g., [22, 28, 42]. For this reason, we also decided to

include video data sets. Specifically, we considered the

Montalbano data set for gesture recognition as provided in

[15]. The task consists of recognizing gestures from 20

categories (Italian cultural gestures), see Fig. 8. The

available data is depth and RGB video together with

skeleton information. For our experiments, we used the

features proposed in [36], which combine depth, RGB

video and skeleton information by means of convolutional

nets and other deep-learning mechanisms. The deep-

learning features were clustered and the vocabulary was

built. One should note that we approach the gesture

recognition problem, that is, given a segmented gesture, to

tell the class of the gesture being performed.

Fig. 4 Sample images from the Caltech-101 data set

Fig. 5 Sample images from different categories of the Birds and Butterflies data sets

Fig. 6 Sample images from the data set of adult image filtering. The categories are (from left to right): inoffensive images, lightly dressed

persons, partly nude persons, nude persons, and pornographic images (not shown)
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5.1.6 MSRDaily3D

Finally, we considered a benchmark data set for action

recognition: MSRDaily3D. This data set comprises 16

actions associated with daily activities, where there are

objects in the background and most actions involve

human–object interaction. A sample sequence from this

data set is shown in Fig. 9. For this data set, we adopted the

protocol from [23–25, 48]. Under this setting, we consid-

ered 12 out of the 16 actions and performed fivefold cross-

validation. We adopted this protocol because it has been

adopted in recent work that uses the BoW representation

[23–25, 48]; therefore, we can compare the performance of

our method with such works. Video sequences were rep-

resented with Depth Cuboid Similarity Features (DCSF)

and the same parameters for the descriptor as in previous

work were used. Descriptors were further processed to

represent videos with their bag of features representation.

5.2 Experimental results

Table 5 shows the results obtained by the different

weighting schemes (traditional, alternative-supervised and

learned) in all of the considered data sets. We report

average f1�measure performance in the test partitions. The

* symbol indicates a statistically significant difference

between our approach and the method from the corre-

sponding columns.

It can be seen from this table that, in average, the

Boolean weighting scheme (column 3) outperforms both,

traditional and alternative, term-weighting schemes. This is

an interesting result, because, most of the times (normal-

ized) TF or TF-IDF weighting schemes are considered in

computer vision tasks. Please note that although the Boo-

lean scheme is the best on average, it is clear from Table 5

that there is no single best weighting scheme for all of the

data sets.

Regarding alternative-supervised term-weighting

schemes, only TF-RF obtained comparable performance to

the TF scheme; however, its performance was lower than

the Boolean scheme. The other two supervised schemes

performed worse than the baseline. These results are

somewhat disappointing, because, intuitively, the incor-

poration of discriminative information should yield better

performance. In spite of these results, our study comparing

traditional and alternative weighting schemes is a contri-

bution that brings some light on the performance of such

schemes for diverse computer vision tasks. More impor-

tantly, we showed the adequacy of the Boolean scheme.

On the other hand, it is clear from Table 5 that the

proposed approach for learning visual-word weighting

schemes outperforms all the other variants in all of the

considered data sets (see column 8, recall for our method

we are reporting the average of 5 runs, that is why we

report average and standard deviation of performance). For

most of the data sets, our GP-based solution improves

considerably the performance of all of the other weighting

schemes, in fact, the differences in performance between

our method and the rest are statistically significant. The

average improvement of our genetic program over the

Boolean scheme was of around 5%; we think this

improvement makes worth applying our method instead of

relying on standard weighting schemes. These results show

that, if searched properly, weighting schemes that maxi-

mize classification performance may result in improved

performance; this is in contrast to using discriminative

information by using IG, CHI, etc.

Higher improvements were observed for image catego-

rization and adult image filtering data sets. Whereas mar-

ginal improvements were observed for Montalbano and

MSRDaily, although results reported for these data sets are

quite competitive with the state of the art, see e.g., [15, 25,

48]. The latter behavior can be due to the fact that the

descriptors used for these data sets are very discriminative

as reported in [15, 36, 48]. In those cases, it may be enough

to verify the presence/absence of such discriminative pat-

terns. This is not the case of image categorization data sets

for which standard descriptors were used.

In addition to the competitive average performance, it is

quite interesting that the standard deviation across runs is

Fig. 7 Sample images from the 15-Scenes data set. Categories are from left to right and from up to bottom: bedroom, suburb, industrial, kitchen,

living room, coast, forest, highway, inside city, mountain, open country, street, tall building, office and store
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relatively low when compared to the other methods. Thus,

evidencing the stability and robustness of the proposed

method.

In order to better appreciate the improvements

offered by our method, Fig. 10 shows the range of

improvement of our method over the best traditional/

alternative weighting scheme per data set in terms of

absolute and relative differences. That is, we plot the

difference in performance between our method (column

8) and the best result among columns 2–7 for each

particular data set. This means that our method is not

compared with the best scheme in average, but with the

best overall for each data set, a somewhat unfair com-

parison for our approach.

Fig. 8 Sample images from the Montalbano data set. Images from each of the gesture categories are shown [15]
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From Fig. 10, it can be seen that the GP-based method

offers considerable improvements for all but for the

Montalbano data set. The difficulty of this task may require

running the genetic program using the whole number of

classes/samples (for this data set, we used only a third of

the total of instances, see column 6 in Table 4). However,

as mentioned above, we think this low improvement is due

to the very effective visual descriptors over which the BoW

representation was generated.

One should note that the proposed method relies on an

iterative optimization process that is somewhat

computationally expensive. In particular, the adopted rep-

resentation (tree-based structure), the fact that the terminals

are associated with matrices and the estimation of the fit-

ness function6 (training and testing an SVM classifier under

a cross-validation) are the main factors that contribute to

Fig. 9 Sample sequence from the MSRDaily3D data set [47]

Table 5 Classification performance obtained with traditional, alternative and learned weighting schemes

Data set/TWS Traditional Alternative-supervised Learned

TF (baseline)* Bol.* TF-IDF* TF-RF* [26] TF-CHI* [7] TF-IG* [7] GP (ours)

Tiny 85.65 84.01 76.72 85.65 78.85 80.49 90:75 � 1:56

101-15 52.26 58.43 48.08 52.30 52.00 51.43 61:05 � 1:12

101-30 56.61 59.28 49.95 56.68 54.63 52.03 63:04 � 1:02

Birds 44.68 48.53 30.55 44.68 44.6 43.95 52:95 � 5:11

Butterflies 26.07 41.44 20.45 26.07 26.08 26.75 42:12 � 3:07

Adult 52.53 58.35 55.39 52.53 46.39 47.23 62:68 � 2:08

15 scenes 59.12 61.26 56.51 59.12 55.02 55.07 63:43 � 0:16

Montalbano 88.55 86.46 88.49 88.55 88.5 88.58 88:79 � 0:12

MSRDaily3D 75:22 � 4:2 68:0 � 6:22 74:72 � 4:47 75:058 � 3:9 73:94 � 5:65 73:77 � 4:9 76:01 � 4:01

Average 54:34 � 22:06 56:91 � 18:78 50:81 � 22:38 54:33 � 22:04 52:46 � 21:04 52:51 � 21:11 61:45 � 18:67

The * symbol indicates a statistically significant difference between our approach and the method from the corresponding columns

6 Please note that estimating the fitness function is quite efficient, as

it is based on a fast approximation to a linear SVM. So this method

can be used for most computer vision applications. Also, we

emphasize that the fitness function is only estimated during the

learning process, which has to be done a single time and most of the

times is performed offline.
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the computational expensiveness of our model. Neverthe-

less, in practice, the average running time of the proposed

method takes of the order of a few hours. Thus, although

the proposed method is somewhat computationally

expensive, the average running time is acceptable for most

computer vision applications. Please note that the process

of learning weighting schemes is a procedure that is per-

formed offline and has to be done a single time. Therefore,

we think it is worthwhile spending a few hours using our

method, given the potential improvement in performance

that can be obtained. On the other hand, one may argue that

alternative weighting schemes are less complex (and

henceforth require of less processing time to generate the

representation). We think this time is negligible, because it

involves only a few additional arithmetic operations over

more matrices (which are also computed a single time).

5.3 Qualitative analysis

This section presents a qualitative study on the proposed

method for learning term-weighting schemes. Table 6

shows sample schemes learned for selected data sets. It can

be seen that all of the learned schemes included primitives

that capture from supervised information, thus showing the

importance of such supervised components. Therefore, we

can say that the proposed method effectively learns to

combine supervised building blocks that result in compet-

itive weighting schemes. This is in contrast with alterna-

tive-supervised schemes that showed limited performance

(see Table 5).

From Table 6, it can be seen that the learned weighting

schemes are indeed simple expressions (opposed to stan-

dard GP solutions that include very complex trees). This is

a desirable property that suggests overfitting is not an issue

for the proposed method.

Finally, it is interesting to note that very different

weighting schemes were obtained for the different data

sets, thus giving evidence that a tailored weighting

scheme is required for each task.

Figure 11 shows the frequency of use of each of the

terminals from Table 2 in the solutions returned by the

genetic program for all of the data sets (i.e., a bar in Fig. 11

corresponds to a row in Table 2). It can be seen that three

most used terminals are W6,W22 andW5, which correspond

to TF, TF � RF and TF-IDF weighting schemes. This is

interesting because, even when these were the most chosen

terminals by solutions returned with the genetic program,

such terminals were significantly outperformed by our

Fig. 10 Absolute (blue-first

bar) and relative (red-right bar)

improvement for the different

data sets, taking as reference the

best traditional/alternative

weighting scheme for each data

set (color figure online)

Table 6 Sample weighting

schemes learned with the

proposed approach for selected

data sets

ID Data set Learned TWS Formula

1 Caltech101-15 sqrtf½sqrtðRF� TFÞ þ log 2ðRF� TFÞ�g ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffi

W22

p
þ log 2ðW22Þ

p

2 Birds log 2f½FMeas� ðCHI� log 2ðTF� RFÞÞ�g log 2ðW16 � ðW3 � log 2ðW22ÞÞ
3 MSRDaily3D ½ðTF� FNÞ � sqrtðTÞ� ððW6 �W11Þ � log 2ð

ffiffiffiffiffiffiffiffi

W22

p
ÞÞ

4 Adult ðsqrtðIDFÞ � DÞ ð
ffiffiffiffiffiffi

W5

p
� DÞ

5 Montalbano log 2½log 2ðCHIÞ� � sqrtðIDFÞ ðlog 2ðlog 2ðW3ÞÞ �
ffiffiffiffiffiffi

W5

p
Þ

6 15-Scenes log 2ðProbRþ TF� RFÞ log 2ðW19 þW22Þ

In column 2 each weighting is shown as a prefix expression. The names of the variables are self-ex-

planatory. Column 3 shows the mathematical expression of each TWS using the terminal set from Table 2
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proposal: compare columns 2, 4 and 5 to column 8 in

Table 5.

Only 6 out of the 22 terminals did not appear in solu-

tions returned by the genetic program. All of these termi-

nals, (W9;10;12;14;15;20) corresponding to TR weights, are

mainly used for feature selection in text classification [17].

Although they have proved to be very effective in [17]

(terminal W14 was the best criterion for feature selection in

that study), they were not very helpful for building term-

weighting schemes for computer vision tasks.

6 Conclusions

The BoVW is one of the most used representations in com-

puter vision tasks.Despite being very effective, it is somewhat

surprising that little research has been performed on term-

weighting schemes for computer vision. In this direction, this

paper introduced a novel methodology for learning weighting

schemes to boost the performance of classification models

relying on the BoVW. The proposed methodology resulted

very effective in a wide variety of computer vision tasks.

Additionally, we report an in-depth study on the performance

of standard and alternative weighting schemes commonly

used in text mining. To the best of our knowledge, our work is

the first that assesses alternative weighting schemes, and it is

the first in proposing methods to learn weighting schemes for

computer vision tasks. From our extensive experimental

study, comprising 9 data sets of common computer vision task

we can conclude the following:

• Among traditional and alternative weighting schemes,

the Boolean one obtained the highest performance.

• Weighting schemes learned with our proposed

approach outperformed consistently all other weighting

schemes in all of the data sets.

• For different tasks, learning a term-weighting

scheme with the proposed approach is much better

than applying other schemes (either traditional/alterna-

tive or learned for another data set).

• Computer vision tasks that are not too generic (e.g.,

gesture recognition or adult image filtering) require of

tailored weighting schemes, accordingly, schemes

learned for this data sets do not generalize well in

other data sets.

• Among all of the considered terminals, three weighting

schemes were used most often by solutions returned by

the genetic program (TF, TF-IDF and TF-RF), how-

ever, the way in which the genetic program combined

such primitives resulted in much better performance.

Future work includes studying alternative methodologies

for learning term-weighting schemes. Specifically, we plan

to pose the problem as one of learning/optimizing the

representation matrix, where other evolutionary algorithms

could be used. Also, we are interested in learning term-

weighting schemes for other domains, like audio [34], time

series [46] or accelerometer data [19], and other scenarios

as one-shot recognition [21] and early classification [14].
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