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Abstract

State-of-the-art approaches on hand pose estimation from depth images have reported promising results under quite

controlled considerations. In this paper we propose a two-step pipeline for recovering the hand pose from a sequence

of depth images. The pipeline has been designed to deal with images taken from any viewpoint and exhibiting a high

degree of finger occlusion. In a first step we initialize the hand pose using a part-based model, fitting a set of hand

components in the depth images. In a second step we consider temporal data and estimate the parameters of a trained

bilinear model consisting of shape and trajectory bases. We evaluate our approach on a new created synthetic hand

dataset along with NYU and MSRA real datasets. Results demonstrate that the proposed method outperforms most

recent pose recovering approaches, including those based on CNNs.
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1. Introduction

Hand pose recovery has attracted great interest in re-

cent years due to the availability of affordable depth cam-

eras. Depth sensors have allowed researchers to use non-

∗Corresponding author: mmadadi@cvc.uab.es (Meysam Madadi)

invasive, accurate approaches to hand pose estimation,

which are more robust to illumination and color changes

than standard RGB cameras. These features have lead

to significant advances in multiple applications including

human-computer interaction, virtual reality, robot learn-

ing and gesture recognition, just to name a few [4, 5, 7, 8].
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Although recent hand tracking approaches based on

depth cameras achieve high performance for some appli-

cations, there are still several open challenges to tackle,

such as finger self-occlusion, hand-body occlusions, low

resolution/noisy depth images, and above all, the inherent

complexity of modeling hand motion due to its highly ar-

ticulated nature. Available datasets mainly provide front-

face hand deformations, which are not suitable to compare

state-of-the-art approaches against hard cases with large

occlusions. To the best of our knowledge, little attention

has been paid to incorporate temporal motion information

in hand pose recovery problems. As an example, Oikono-

midis et al. [17] only initialized the model using previous

frame.

In this paper, a solution to the problem of hand pose

recovery in depth image sequences is proposed. The so-

lution combines both spatial and temporal information in

a top-down strategy. We present a system for efficient

hand pose recovery in non-controlled settings involving

self-occlusions. Based on current trends towards min-

imizing pose parameters in the space of nearest candi-

dates [39, 23], we exploit an effective shape descriptor

to extract such nearest candidates. As in [28] we esti-

mate each object part separately while reducing the search

space. We first extract palm joints, which provide a basis

for fingers, using nearest candidates. Following [20] we

define an efficient objective function and then minimize

parameters of each finger model to fit with its appearance.

Our function is different from [20] since they extract fin-

gertips while we accurately segment fingers. Thanks to

this objective function we get a fast convergence to the

finger model parameters while handling occluded parts.

Motivated by [43], our estimated joints are applied

in a sequence of frames to minimize parameters of a

trained bilinear model [1] consisting of shape and trajec-

tory bases. This process further refines the estimation of

occluded parts. Fig. 1 shows our method pipeline: near-

est neighbors extraction, hand segmentation, single-frame

pose recovery, and temporal pose recovery. Our approach

has proven to be more robust under large viewpoint sets

and complex hand poses than state-of-the-art approaches

when data is balanced for different viewpoints and poses.

To evaluate our method under such situations, we created

a synthetic dataset with +600K hand pose samples for

single-frame pose recovery and +1M frame sequences for

temporal pose recovery, with high deformations and oc-
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clusions in both learning and test sets. We call this dataset

SyntheticHand. Although, egocentric datasets have been

recently introduced [22], hand-object interaction is not

within the scope of this paper. Though, we evaluate on

real datasets like NYU [36] and MSRA [28], and obtain

comparable results on both model-based and data-driven

approaches.

The rest of the paper is organized as follows. Sec-

tion 2 reviews state-of-the-art works in the field. Section 3

presents the proposed system. Results are shown in sec-

tion 4, and finally, section 5 concludes the paper.

2. Related Work

The field of hand pose estimation has become very ac-

tive due to the use of depth sensors. A comprehensive

survey on existing methods can be found in [8] and [41].

In this section we focus on those approaches most related

to our contribution. Hand pose estimation methods can

be roughly divided into model-based methods and data-

driven methods [6, 19].

Model-based techniques consider an a priori 3D hand

model whose pose is determined over time by some track-

ing procedure [23, 12, 20], like the Particle Swarm Opti-

mization presented in [17]. Hand model can take a simple

shape by using cylinders and spheres [17] or be defined

in a parametric space learned by some priors [9]. Unfor-

tunately, these approaches require some kind of accurate

initialization, and due to the fast motion and non-rigid na-

ture of hands, together with finger self-occlusions, it is

still a challenge for single-hand trackers to correctly main-

tain the state of an animated 3D hand model over time. In

recent works, while some works propose more advanced

hand models [35], others try to sample hypotheses by

physical constraints [21]. In model based approaches, de-

signing an efficient energy function is important to guar-

antee a global solution with minimum energy. In this

sense, Taylor et al. [34] use a complex function including

surface discrepancy and normal vector consistensy, con-

straints on pose parameters, temporal sequence smooth-

ness, self-intersection and fingertip checking. Minimiza-

tion of this function in such a high-dimentional paramet-

ric model is tracktable using gradient-based optimization

which needs a differentiable function.

On the other side, data-driven methods directly pre-

dict at each frame the pose of the hand by learning depth

and image features [28]. Contrary to using hand track-
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ers, which lead to model drift over time, single-frame de-

tection methods are initialized at each frame, thus recov-

ering more easily from estimation errors [23]. Multiple

procedures based on Random Forests (RF) have emerged

including Hough Forests [39], Random Decision Forests

[11] and Latent Regression Forests [30], as detailed in [8].

Unfortunately, the number of occluded joints is com-

monly bigger in hands than in human bodies. As a result,

techniques based on RF usually require huge training sets,

and some kind of viewpoint estimation is needed in order

to improve performance [32]. Some data-driven works

analyze the hand in the space of nearest shapes in order

to reduce the search space [23] or approximate unknown

pose parameters through matrix factorization [3].

Following current trends in Computer Vision, although

both the architecture and weight initialization of a neural

network strongly determine its performance, CNN-based

techniques continuously improve the state-of-the-art ac-

curacy on different benchmarks. Tompson et al. [36]

optimized an inverse kinematic approach based on joint

heatmaps generated by CNN for 2D joints estimation.

Oberweger et al. [15] optimized a shallow CNN based on

embedded space of hand pose. While Ye et al. [40] in-

Figure 1: Diagram of the proposed method. In the first step, a single-

frame hand pose is estimated. First palm joints and finger segments are

recovered through nearest shapes. Then finger models are fitted using

extracted candidates. In the second step, temporal data is incorporated

to refine first step estimation.

tegrates cascaded and hierarchical regression into a CNN

framework, Ge et al. [13] define three viewpoints based

on hand point cloud eigenvectors and fuse heatmaps gen-

erated by CNN for each view. Researchers even combined

generative models with CNNs where generative model is

used to compute a feedback error [16], as a forward kine-

matics layer [44], or share latent space [37]. By the help

of synthetic data, [14] used hand segmentation as an in-

termediate representation to improve pose estimation in a

weakly supervised manner.

Temporal information and trajectory analysis, besides

the shape itself, provide discriminative information to an-
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alyze shape and recover occluded parts. Works from

structure from motion, such as matrix imputation [25],

statistical model analysis and non-rigid structure from

motion [18, 33], showed the benefits of using temporal

information for shape analysis. Zhou et al. [43] proposed

a spatio-temporal model for the problem of human pose

recovery. Although their approach obtains promising re-

sults, the complexity of the minimization problem makes

it not applicable for all types of pose deformations. In the

hand pose recovery, [9] just used temporal data to retain

a fixed shape parameter, while [29] used temporal pose

smoothness as a prior energy function.

In all the aforementioned approaches, there is a trade-

off between real-time and accuracy performance. Tech-

niques exhibiting high accuracy typically work at low

frame rates, thus becoming unsuitable for interactive sys-

tems of spatially-immersive scenarios.

3. Methodology

The basic idea of the proposed method is to recover

a hand pose through a combination of part-based model

fitting and data-driven approaches in a single frame and,

afterward, refine occluded joints in a sequence. As illus-

trated in Fig. 1, we first extract nearest shapes by intro-

ducing a shape descriptor (Sec. 3.1). We apply nearest

shapes with two purposes: 3D palm joints recovery and

hand segmentation (Sec. 3.2). Given the palm joints and

segmented fingers, we extract a number of candidates for

each finger using a set of predefined examples. We then

send these candidates to the optimization process to min-

imize an objective function which fits a finger model to

the segmented finger (Sec. 3.3). We minimize the param-

eters of each finger separately. Finally, occluded joints are

refined by solving the coefficients of the trained bilinear

model in a sequence of F images (clip). We cluster clips

in order to reduce non-linearity (Sec. 3.4).

In order to evaluate our method on highly-variable

poses and viewpoints, as well as temporal analysis, we

created a rich synthetic dataset mimicking the features of

commodity depth cameras (Sec. 4.1). We illustrate some

properties of the hand model used to create this dataset

in Fig. 2. We created a hand model with 25 semantic

segments used as low-level pixel labels in the dataset. At

a higher level of semantics, we segmented the hand by

assigning each pixel a label from the set L = {l1, ..., l6},

where L represents fingers and the palm. Next, we detail
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the main components of the proposed approach.

3.1. Nearest shapes extraction

Several state-of-the-art works [23, 39, 11] use Ran-

dom Forest (RF) to extract viewpoint or nearest neighbors

from the deeper branches of the trees trained on a partic-

ular dataset. Such methodology can be seen as stochas-

tic shape extraction and leads to some irrelevant nearest

shape recovery. Besides that, this approach is not efficient

for large scale datasets. On the other hand, common sta-

tistical shape descriptors try to find a correlation among

the components composing the shape and grouping them

into bins.

In this work we train a classifier to segment a hand into

a set S = {si}
25
i=1 with 25 classes defined in the dataset and

group probability responses of the classifier into log-polar

bins. Therefore we first select a fixed random number of

pixels from the hand and estimate each class response for

each pixel applying the trained classifier. For aggregating

the responses into bins, we reconstruct a point cloud of

selected pixels and divide XYZ axes into three axis pairs

XY , XZ and YZ. Thus, we map the point cloud to front,

top and side views and apply measurements separately on

each view.

We compute the log-polar binning based on shape con-

text [2]. Let q = 1
N

∑N
i=1 Pi be the center of the point cloud

where N is the number of points and let Pi ∈ R3 denote

the i-th point in world coordinates. We set q as the center

of the log-polar coordinate system. Then histograms of

different views (front view for instance) are computed as:

Hxy(k, c) =

N∑
i=1

{Ric|(P
xy
i − qxy) ∈ binxy(k)}, (1)

where Ric denotes probability responses of the i-th point

and c-th class predicted by the classifier, and k is the bin

number. Finally histograms at each view are concatenated

and normalized. Applying such descriptor we discrimi-

nate both spatial and class dependencies of different shape

points into bins, being fast to compute, invariant to slight

rotations of the hand and robust against boundary noise

due to the random selection of points. We show an illus-

tration of our descriptor in Fig. 1. We set 8 angle and

5 radius bins as the log-polar binning parameters of the

shape descriptor. Finally, for a fast extraction of the K

nearest shapes, a kd-tree is trained based on the extracted

features. Next we explain details of used classifier to seg-

ment hand.

Segmentation classifier details. We apply the work of

Shotton et al. [24] as our segmentation classifier. Next
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we explain offset features extraction. Let O ∈ R2×n con-

tains n random offsets uniformly distributed in the range

[−1, 1]. Offsets O can be adapted to any depth camera

by taking camera focal length into account. Therefore we

update O by multiplying it by a scaling factor 120mm and

camera focal length. Afterward we compute the feature

δi j at pixel Pi given the offset j as:

δi j = I

Pi +
O1

j

I(Pi)

 − I

Pi +
O2

j

I(Pi)

 (2)

θi j =



∞ if δi j > dmax,

−∞ if δi j < −dmax,

δi j otherwise,

(3)

where I(.) denotes depth at given pixel in the image, dmax

is the maximum depth capturing device can take and O1
j

and O2
j denotes the jth offset of the first and second offset

array, respectively. Image I must be set by a high value

for background pixels beforehand. We train 14 trees with

depth 20 using 100 random features, 150K random sam-

ples with a subset of 500 randomly selected pixels per

frame and 1000 offsets. To fit data in memory we train

each tree with 23% of random data.

(a) (b) (c) (d)

Figure 2: Finger models. a) Hand 3D model used for the SyntheticHand

dataset generation, b) unique color labels used to identify surface points

on the hand, c) DOF for different joints. Joints are indexed by assigned

numbers. This figure also shows how skeleton is fitted inside hand. d)

Palm coordinate system. Finger parameters are computed based on this

coordinate system.

3.2. Palm and finger extraction

Given the nearest shapes and their corresponding joints,

one could minimize coefficients of a weighted sum of ba-

sis models (like PCA) to extract hand pose. However we

observed that this process does not perform well in prac-

tice. Instead, we divide the problem of pose estimation

into two subproblems: palm pose estimation, as global

hand pose, and fingers pose estimation. Each problem

is solved separately. In the model, palm pose is first de-

tected. We assume palm is rigid and refer to palm pose as

a composition of wrist and base joints of all fingers except

the thumb in 3D space (i.e. joints 4, 8, 12, 16 and 20 in

Fig. 2(c)). Sun et al. [28] regress palm pose by iterative

refinement of an initial pose. Sharp et al. [23] estimate
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a global view point and iteratively fit a model by gener-

ating some hypothesis candidates. It has been shown that

NN-based approaches perform well in practice [8]. In this

work we rely on extracted nearest shapes to both estimate

palm pose and segment the hand.

Nearest shapes can vary in shape and pose and need to

be aligned to each other beforehand. We use palm joints

of nearest shapes to align them through Procrustes anal-

ysis. This provides a uniform and smooth distribution of

palm points in the point cloud of the nearest shapes. Given

this point cloud with their corresponding labels li, we find

an affine transformation A with scaling factor s to hand

point cloud P by applying iterative closest point match-

ing (ICP) [42]. For a faster convergence, we modify ICP

process to find closest points from group of points with

the same label. Pixel labels of test frame were estimated

by RF beforehand. Then, we get the palm joints by trans-

forming the nearest shape joints given A and s.

Although our trained RF could segment the hand, it is

not reliable under some situations, especially for distin-

guishing fingers (See Fig. 4.1 for some samples). Correct

hand segmentation is critical for the accuracy of our ap-

proach. Since we fit a finger model based on segmented

pixels of that finger, an incorrectly segmented finger in-

stantly causes a failure pose. Quadratic discriminant anal-

ysis (QDA) provides a proper way to assign each point in

the point cloud in query a label from aligned point cloud

of nearest shapes efficiently.

3.3. Pose estimation

We fit a simple finger model for each finger separately

to get fingers poses. Each finger model S is composed

of three cylinders and half-spheres except for the thumb,

which is composed of an ellipsoid, two cylinders and

three half-spheres. Finger model parameters are com-

puted based on the palm coordinate system (see Fig. 2).

Given hypothesis parameters h, camera calibration pa-

rameters, palm pose and finger properties like length and

diameter of bones, we can render a 3D model of the fin-

ger S and project it onto the image plane. Let IM , MM

and MF be the depth image of the projected finger model,

the projected finger model mask and the segmented fin-

ger extracted from Sec. 3.2, respectively. Then, we set

the background of IM to zero and define Min = MF ∧ MM

and Mout = ¬MF ∧ MM (see Fig. 3). The goal is to find

hypothesis parameters h that best fit the model to the fin-

ger in query. Therefore we define the objective function
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E(h, I) to compute the amount of discrepancy between IM

and I with respect to MF through:

E1 = 1 −
#Min

#MF + ε
, (4)

E2 =


10 if Min ⊂ �,

E1
mean(min(|IM (Min)−I(Min)|,λ))

λ
if Min 1 �,

(5)

E3 =
#(IM(Mout) < (I(Mout) + τ))

#(Mout) + ε
, (6)

E(h, I) = w1E1 + w2E2 + w3E3, (7)

where λ and τ are some depth difference thresholds. Term

E1 computes overlapping area between MM and MF nor-

malized by #MF . Term E2 controls the mismatching of

depth in the overlapping area Min. Such a mismatching

depth energy is directly related to #Min. We consider this

situation in the first case of Fig. 3. A small area Min

can generate a lower depth mismatching energy which can

cause a wrong matching. Therefore we scale E2 by multi-

plying it to E1 as a function of #Min to reduce the effect of

#Min in the depth mismatching energy. We add term E3

to avoid finger collision to non overlapping pixels Mout.

We consider this situation in the second and third cases of

Fig. 3. We add the term ε to avoid division by zero and

set it to a low value. The number 10 in E2 is a maximum

energy, and w1, w2, and w3 are some fixed weights.

Figure 3: Objective function E. We jointly maximize overlapping area

Min (E1) and minimize depth discrepancy between generated model and

hand finger (E2). We show the overlapping area (green) can have a rela-

tion to the depth difference. A small depth difference may not guarantee

a good matching, and therefore, we penalize it by multiplying it to the

normalized non-overlapping area (blue). Hence a small depth difference

is only useful if blue area is small as well. In the second and third cases

we should avoid collision between the model surface IM and other finger

surfaces available in Mout (E3). τ controls the area between fingers.

Particle swarm optimization (PSO) is a commonly used

approach to minimize such an objective function. How-

ever, it is not efficient for minimizing over all possible

parameters and it is easily trapped to local minima [10].

In order to cope with such problems, we predefine a low

number (300 in our case) of sample fingers which cover

most finger poses and evaluate a simple function over all

predefined samples to select the best candidates. We use

simple facts to design this evaluation function. As the first
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rule, all finger joints should be located in the hand mask

after projecting them onto the image plane. Secondly, the

joints should have at least a depth equal to the hand sur-

face depth plus a threshold. Let Jxyz
f ∈ R

3× fN be the matrix

of 3D locations of the joints belonging to the finger f and

Juv
f ∈ R

2× fN be the matrix of 2D locations of the joints of

finger f after projecting onto the image plane where fN is

the number of joints. Therefore all joints should meet the

constraint I(Juv
f ) + ω ≤ Jz

f , where ω is a constant value.

Since we set the background of I to a high value, this con-

straint satisfies the first rule as well. We consider a third

rule for visible fingers such that the joints should not be

far from the finger point cloud. We formulate these rules

for finger f as:

C f d = {I(Juv
f i ) − Jz

f i + ω}, i ∈ 1, ..., fN , (8)

C f =


C f d if MF ⊂ �,

{C f d, γ‖Ixyz(MF) − Jxyz
f ‖} if MF 1 �,

(9)

Err(C f ) =
∑

{c|c∈C f∧c≥0}

min(c, ϕ), (10)

where Ixyz(MF) is the center of finger point cloud and Jxyz
f

is the center of the candidate joints. ω is a depth threshold

that controls the distance of the joints to the hand surface.

γ is a weight to balance different terms. Eq. 9 is treated

as a constrained inequality and therefore negative values

are desirable. As a consequence we sum over positive

costs limited by constant threshold ϕ Eq. 10 to evaluate

each sample finger. Finally a number of samples with the

lowest error are selected as candidates and feed into PSO.

We set the number of generations and population size to

5 and 30, respectively. For completely occluded fingers

(i.e. MF ⊂ �) we apply Eq. 9 and make an average finger

from outcomes. All the thresholds and weight terms are

experimentally set to some fixed values as follows: τ =

15, λ = 25, w1 = 0.25, w2 = 0.65 and w3 = 0.1, ω = 8,

γ = 4 and ϕ = 50.

3.4. Spatio-temporal pose recovery

Time-varying spatial data is involved in a vast range

of computer vision applications [38, 33] and proved to

be useful in extracting missing data. Spatial correlation

or trajectory analysis of independent points solely fails

to model all information in spatio-temporal data. Akhter

et al. [1] combined two linear shape and trajectory bases

learned by discrete cosine transform and SVD to exploit

spatio-temporal regularities. We follow this work to gen-

erate linear bases of hand data. To train bilinear bases, we

have generated a dataset including smooth deformation
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of fingers in a reference view in a sequence. The advan-

tage of keeping a reference view is that all the frames are

previously aligned by their palm joints. Then we extract

fixed-length clips by a sliding window over the sequences.

A clip is represented by Q ∈ RF×5D where F is the num-

ber of frames and D is the number of parameters for each

finger. Clip Q can be factorized by TCBT (as introduced

in [1]) where T ∈ RF×kt and B ∈ R5D×ks are learned trajec-

tory and shape structures and C ∈ Rkt×ks is the coefficient

matrix. Given the learned T and B, the goal is to minimize

a function over coefficients C in order to extract clip Q at

test time.

A common problem with linear basis models like PCA

and SVD is that they are sensitive to the correlation coeffi-

cient or distribution of the data. A solution is to divide the

space of clips (e.g. clustering) in order to provide more

correlation among data. However, this solution is not ex-

act. In, [43] authors search over all clusters to find best

models. However, this is not suitable for a huge number

of clusters, as in our case. In order to cope with previous

issues, we propose a fast and approximate solution to find

best models.

In the training step, we apply k-means to cluster data.

Figure 4: SyntheticHand dataset samples. Upper two rows are some

random sample poses and lower two rows are a small sample set of the

depth images generated for the test set. The image shows ten interpola-

tion frames between four predefined hands poses.

We regenerate each cluster by extracting νN nearest clips

to the cluster centroid where N is the number of clips in

the cluster and ν > 1. In fact, we extend each cluster with

overlapping to its adjacent clusters. Afterwards, we train

bilinear models T and B on each cluster (as described in

[1]). This causes the models to be more robust at cluster

boundaries.

At test time, given the last clip Q (initialized using Sec.

3.3) and parameters visibility V ∈ {0, 1}F×5D (extracted

from RF), we are able to find nearest clips in a dataset

by a trained kd-tree. However, visible and invisible joints

have the same weight in the clips and possible errors in the

initial estimation can cause a false nearest cluster. More

specifically, the task is to find a cluster that best describes

both the appearance and occluded parts, and then mini-

mize a function on coefficients C. Therefore we define
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the objective function S TC(Q,V,T, B, µ, σ) as:

S TC =

F∑
f =1

5D∑
i=1

V f i|Q f i − Qr
f i| + β

F−1∑
f =1

Ψ f , f +1, (11)

where Q f i extracts the i-th parameter in frame f , Qr =

TCBT denotes reconstructed parameters through coeffi-

cients C, Ψ is a smoothness function among correspon-

dent parameters in frames f and f + 1, and β is a regular-

ization weight. We define the smoothness function as:

Ψ f , f +1 =

5D∑
i=1

¬(V f ,i ∧ V f +1,i)

∣∣∣∣∣∣Qr
f ,i − Qr

f +1,i − µ f i

σ f i

∣∣∣∣∣∣ ,
(12)

where µ f i and σ f i are precomputed mean and standard

deviation distance for i-th parameter in the frame f for

each cluster, respectively. The first term in Eq. 11 denotes

the appearance cost and the second term penalizes large

movements of the occluded joints.

We approximate the best cluster by first extracting a

number of nearest clusters, traversing a trained kd-tree us-

ing clip Q. This kd-tree is trained based on clusters cen-

troids. Subsequently, we generate a number of random

poses around clip Q and evaluate function S TC on them

for each extracted nearest cluster. Finally, we take that

cluster which generates minimum average error.

Efficient minimization of Eq. 11 is required.

Levenberg-Marquardt algorithm is a standard mini-

mization technique, although finding a good initial point

to minimize Eq. 11 makes the problem intractable. In

order to overcome this problem, we use PSO with a

number of randomly selected particles around Q and

apply T T R(BT )−1 for all random clips to generate initial

particles, where R is a random clip and T and B are

trained bliniear structures of the best cluster. To have

a fair distribution of fingers and removing undesired

clips, we apply Eq. 10 on all fingers for all random clips

and select a subset of best candidates by sorting clips

regarding their maximum finger error. As a consequence,

the solution is achieved in a few generations. We set the

number of generations and population size to 5 and 100,

respectively.

We use finger parameters in all frames as a trajectory

descriptor which is invariant to finger length and hand

shape. Finger parameters have an advantage versus the

3D joints locations since we have more control on them,

like adding constraints or generating a more meaningful

shape without adding extra regularization. Given that this

process mainly improves occlusion recovery, we combine

the recovered invisible joints to the visible joints esti-
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Figure 5: Some examples of NYU dataset segmented by using joint dis-

tances to points.

mated in the initial step as the final pose. In the exper-

iments, we show that initial pose estimation has a low er-

ror which is reliable enough to be used in the occlusion

refinement process. We apply full rank matrices to train

the bilinear model, with ks = 7, kt = 7, clip length F = 7

frames, β = 0.1 and N = 200 clip clusters.

4. Experiments and results

In order to present the results, we first discuss the con-

sidered data and the experimental setup.

4.1. Datasets

SyntheticHand data generation. Datasets were gen-

erated with Blender 2.74 using a detailed, realistic 3D

model of a human adult male hand (Fig. 2(a)). The

model was rigged using a hand skeleton (Fig. 2(c)) with

four bones per finger, reproducing the distal, intermedi-

ate, and proximal phalanges, as well as the metacarpals.

The thumb finger had no intermediate phalanx and was

controlled with three bones. Additional bones were used

to control palm and wrist rotation. Unfeasible hand poses

were avoided by defining per-bone rotation constraints.

All finger phalanges had only 1-DoF rotation (for finger

flexion/extension) but metacarpals had 2-DoF rotation to

allow for finger adduction/abduction. This resulted in 4-

DoF per finger (except for the thumb), which proved to

be enough to reproduce all reasonable poses in the con-

text of gesture-based interaction (see some sample poses

in Fig. 4).

Points on the hand’s surface were assigned a unique

color label identifying the underlying skeleton joint, as

shown in Fig. 2(b). The palm center was assumed to be

roughly at the metacarpals’ centroid.

The animated hand model was rendered using a virtual

camera reproducing the image resolution and the intrinsic

parameters of the target depth sensor (Kinect-2). The vir-

tual camera was always aiming at the hand, from a view

direction which was chosen randomly from a uniform dis-

cretization of the Gauss sphere (we used 320 directions

associated with the normal vectors of a subdivided icosa-
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(a) (b) (c)

(d) (e) (f)

Figure 6: Quantitative results. a) Error per joint on SyntheticHand dataset. Joint arrangement is shown in Fig. 2(c). The mean errors are 12.86,

12.40, 15.16, 14.72 and 11.09, respectively. b) Success rate over different error thresholds on SyntheticHand dataset comparing to DeepPrior

[15]. c) Our baseline worst case success rate on MSRA dataset comparing to [28]. d) and e) Our greedy success rate on NYU dataset for worst

and average error, respectively. f) Average error success rate on NYU dataset on the first 2440 frames in testset. We compare with model-based

approaches following the same protocol for evaluatation on this dataset.

hedron)1.

SyntheticHand training datasets. We generated two

different training sets: static hand dataset and dynamic

hand dataset. For the static hand dataset, we generated

three pieces of data: a color image (pixel labels), a depth

1SyntheticHand dataset is publicly available at:

http://chalearnlap.cvc.uab.es/dataset/25/description/

image, and a text file containing the location of the skele-

ton joints. Each training example was generated by ran-

domly choosing a view-direction and a hand pose (Fig.

4). We generated over 600K samples for this dataset and

used it for nearest neighbor extraction.

For the dynamic hand dataset, we just produced the

text files containing the joints locations. Camera view-

14



point was fixed in this dataset in order to benefit from a

reference viewpoint and palm joints were aligned. We

provided temporal data in this dataset including a smooth

interpolation between pairs of key poses. Key poses were

chosen either randomly or from a small set of predefined

poses. We included different deformation speeds in this

dataset. The unique motion range of the thumb (which

includes opposition-reposition, besides flexion-extension

and adduction-abduction) forced us to prevent finger self-

intersections by inserting additional frames. This guaran-

teed feasible and natural hand movements. We generated

over 1200K frames for this dataset and used it to extract

clips and train bilinear model.

SyntheticHand test dataset. For generating this

dataset we followed the same rule as our dynamic hand

dataset except we produced the color labels, depth im-

ages, and text descriptions, and camera rotations were

smooth along pose interpolation frames (see Fig. 4). We

generated over 8K frames for this dataset.

Real datasets. To the best of our knowledge there is no

real dataset consisting of both hand segments and pose at

the same time. Some datasets just provide fingertips [27].

However, we selected MSRA [28] and NYU [36] datasets

to evaluate our method on real benchmarks. MSRA con-

tains 17 hand posture categories captured from 9 subjects

including 76,500 frames. Hands are rotated in a 90 degree

range near to the camera, depth image has low amount of

noise and the definition of joints locations is similar to

ours. A few invalid frames are available in this dataset

and in a few cases joints locations do not follow hand

appearance. NYU dataset has a broader range of hand

pose and viewpoint than MSRA. However, it contains just

one subject in the training set and two subjects in the test

set. Depth images in this dataset are noisy and fingers

are missed in some cases. This dataset contains around

73K training and 8K testing frames which are captured by

three depth cameras from multiple viewpoints to provide

accurate groundtruth pose. We then provide a groundtruth

segmentation on these datasets using available joint loca-

tions and the distance to the point cloud. Specifically, we

compute the distance from each joint to all points. This

creates a matrix with size equal to the number of points

and number of classes. Then, the index of minimum value

is taken as groundtruth label for each point. To follow the

same definition of segments as our synthetic hand dataset,

we add auxiliary joints to the palm. We show some exam-
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(a)

(b)

Figure 7: Single frame evaluation in a sequence on SyntheticHand

dataset. a) Greedy vs. baseline (KNN+ICP). It can be seen that ap-

plying per-finger model fitting on top of baseline generates more stable

results in a sequence. b) Quantitative RF performance. We improved

RF performance by around 20%. We include ICP MSE (green line) as

a function of the difficulty of each frame. ICP MSE normalized by a

maximum threshold 200. ICP MSE shows how near each frame is to its

nearest shapes.

ples of this procedure in Fig. 5.

4.2. Ablation study

In this section we explain and analyse different compo-

nents of the proposed technique in both single frame and

Figure 8: Qualitative RF segmentation performance on SyntheticHand

dataset. Rows from top to bottom: ground truth, RF, and improved RF

results. We enforce each point to take the most confident class from a

subset of all classes given by QDA segmentation.

dynamic hand pose recovery.

Evaluation metrics. We used the 3D Euclidean dis-

tance from joints to groundtruth in milimeters (mm) for

evaluating the different approaches. We also measured the

success rate as in [28] to compute percentage of frames for

each error threshold D. We compute success rate based

on worst joint error per frame and average joints error per

frame. To evaluate segmentation approaches we use per-

centage of average pixel classification accuracy.

Methods in the comparison. In the single frame pose

recovery, we used a transformed average shape from the

nearest neighbors according to our shape descriptor and

ICP as the baseline (so called KNN+ICP). We also study

different optimizations of Eq. 7. We compare a greedy

optimization vs. PSO (so called Greedy and PSO, respec-
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(a) (b) (c)

(d) (e) (f)

Figure 9: Quantitative results comparing different components of the methodology on SyntheticHand dataset. Bar graphs are generated by excluding

5% outliers.

tively). In the greedy approach after applying our popu-

lation selection proposal (Eq. 10), the best candidate is

selected by evaluating Eq. 7.

In the dynamic pose recovery, we study effectiveness

of bilinear Eq. 11. We compare pose recostruction

based on optimized coefficients C for all joints (so called

Bilinear optimization) and occluded joints (so called

Greedy+Bilinear opt.). In the latter, visible joints are

taken from Greedy approach and occluded ones are set

by Bilinear optimization.

Single frame hand pose evaluation. We show per-

joint average error (mm) for introduced methods in the

comparison in Fig. 6(a). As it can be expected PSO per-

forms slightly better than Greedy approach. However, the

difference is not significant and the Greedy approach runs

faster than PSO. Joints belonging to the palm exhibit ac-

curate palm pose recovery even in quite difficult poses

which is quite critical for recovering the pose of individual
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(a)

(b)

Figure 10: Dynamic hand pose recovery. a) Greedy vs. bilinear opti-

mization. Applying spatio-temporal optimization on all joints degrades

the accuracy in a sequence comparing to greedy solution without tem-

poral refinement. Therefore we just apply bilinear optimization on oc-

cluded joints given by RF. b) Greedy+bilinear optimization results in a

sequence of frames of SyntheticHand dataset. Rows from top to bottom:

depth image, ground truth, and final results. Frames have an error lower

than 30mm per visible joint for initial step.

fingers. As expected rigid alignment of nearest neighbors

(KNN+ICP) has the worst results. One can see a more

stable result in a sequence of frames for Greedy compar-

ing to KNN+ICP in Fig. 7(a). Notice that KNN+ICP is

the most accurate approach for the thumb joints. A pos-

sible explanation is that the thumb has higher movement

range than other fingers and it is thus hard to recover with

model-based approaches. We also show average success

rate for methods in the comparison in Fig. 6(b). Next we

analyze components of the model.

The first step of our approach is nearest shape extrac-

tion. RF segmentation responses are used to compute the

proposed descriptor, and therefore, we consider the rela-

tionship between the accuracy of RF and 1-NN average

joints error in Fig. 9(a). To generate this graph, we divide

data into 9 groups based on RF performance (shown as X-

axis). Then for each group we compute bar graph using

per-sample average error given by first nearest neighbor.

As it can be seen from the figure, such dependency is min-

imal since for example for samples with 10% RF perfor-

mance, the proposed shape descriptor could find the 1-NN

with an average error 23 mm comparing to the average 1-

NN error 13 mm for samples with 90% RF performance.

On the other hand, KNNs are good enough to generate

an accurate hand segmentation as can be observed in Fig.

9(b). Therefore, we can argue that the final hand segmen-

tation performance has a low dependency on RF segmen-

tation accuracy. This statement is valid as long as we have

a uniform distribution of pose and viewpoint in the data.
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We applied an extra analysis on RF segmentation im-

provement regardless of hand pose recovery. By incorpo-

rating QDA for segmenting hand into the set L, we could

improve RF segmentation performance. Since each seg-

ment li has a number of sub-segments from the set S , for

a given pixel P belonging to segment li, we discard those

probabilities (given by RF) not belonging to li, and con-

sider the index of the maximum probability as the final es-

timated label for that pixel. We illustrate in Fig. 7(b) how

RF performance improved in a number of frames based on

our finger segmentation strategy. We added ICP MSE of

extracted nearest shapes to Fig. 7(b) which shows a mean-

ingful relationship between the accuracy of RF and the

alignment error among extracted nearest neighbors. We

normalized MSE by a maximum threshold of 200 for the

sake of visualization. Fig. 4.1 illustrates some qualitative

results of RF segmentation performance and its improve-

ment.

The relationship between the number of the nearest

neighbors and the final joints error is illustrated in Fig.

9(c). Setting K to 3 leads to more stability regarding

the standard deviation and the correlation of the nearest

neighbors.

Hand segmentation accuracy is critical for final pose

recovery. This relationship is shown in Fig. 9(d). How-

ever, one can observe how complex poses (with high ICP

MSE) affect the mean pose error by comparing Fig. 7(a)

to Fig. 7(b). As an example, we refer to frames 70 to 100.

This is because nearest neighbor extraction and hand seg-

mentation mainly depends on the difficulty of the pose or

the availability of it within the training data. Therefore

data availability in the training step is a key issue for the

success of the method.

We performed additional experiments by modifying

test data. For the first experiment, we added artificial

boundary noise to depth images. For this task we ex-

tracted nested boundaries and added increasing Gaussian

noise from the inner boundary to the outer boundary. The

maximum noise was 30 mm for the outer boundary. We

also considered the effect of hand distance to camera by

increasing the distance of the hand point cloud to the cam-

era and reprojecting it to the image plane. The results are

shown in the Fig. 9(e). It can be seen that boundary noise

can affect the accuracy more than the hand distance to

camera. However, this effect appears to be minimal.

For the current version of the system, the hand can not
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Table 1: Quantitative results on MSRA dataset. Values are per-joint error in millimeters. Letters R and T go for finger root and finger tail,

respectively. We extracted values from the results reported in the papers. Results for [17] obtained from [3]. We highlight best values (lower is

better) in bold.

IndexR IndexT MiddleR MiddleT RingR RingT LittleR LittleT ThumbT Mean

Oikonomidis et al. [17] 31.0 56.0 32.9 56.0 32.9 49.3 35.1 53.7 22.2 38.2

Choi et al. [3] 22.6 43.5 24.0 44.9 23.1 43.1 21.8 39.5 31.1 29.8

Ge et al. [13] 11.5 16.0 9.0 15.6 9.9 15.1 13.2 16.0 16.7 13.0

Ours (KNN+ICP) 9.5 17.3 7.7 17.1 8.3 15.5 10.6 17.7 14.8 12.8

be occluded by any other object. Since we use ICP and

QDA, model drifts might occur when the number of vis-

ible pixels from the hand is dramatically reduced (due

to pose, viewpoint, camera noise, or missing data). Not

availability of nearest shapes does also influence the pose

recovery process for both hand segmentation and palm

pose recovery tasks. Next we analyze details of system

components.

Dynamic hand pose evaluation. Per-joint average er-

ror (mm) and average success rate are shown in Fig. 6(a)

and 6(b) for dynamic pose recovery methods and can

be compared to single frame methods. As one can see,

Bilinear optimization solely does not improve the over-

all error and results in lower accuracy than single-frame

techniques, but when combined with the greedy solution

(Greedy+Bilinear opt.) we could improve occluded parts

poses by 3.7 mm. Althouth, the accuracy of temporal pose

recovery completely depends on the accuracy of the initial

pose estimation (either Greedy or PSO) due to temporal

cluster estimation, we observe a higher rate of refinement

for bigger initial pose error. We consider this case in Fig.

9(f). Although these results show the benefits of incor-

porating temporal data, increasing the number of frames

within each clip adds complexity to the bilinear coeffi-

cient optimization and precludes real-time performance.

We also compare Greedy vs. Bilinear optimization in a

sequence of frames in Fig. 10. We qualitatively show

Greedy+Bilinear opt. results in a sequence in Fig. 10(b).

Time complexity. Our methodology has a high paral-

lelization capability at any stage. It is GPU-friendly since

fingers estimations are minimized separately.

Greedy finger minimization needs just evaluating func-
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tion E over the selected candidates. Initial pose estimation

is achieved in real time. Most of the processing time is

consumed by PSO optimization over bilinear model coef-

ficients C. We use 5 generations over 100 particles which

is comparable to 30 and 100 in [23] respectively. We im-

plemented the whole pipeline in Matlab and C++, which

although not optimized, runs at 10 fps.

4.3. Comparing to state-of-the-art

In this section we compare proposed Greedy approach

with state-of-the-art on introduced benchmark datasets in

Sec. 4.1.

Evaluation on SyntheticHand dataset (single frame

pose recovery). We compare Greedy approach with

DeepPrior [15], a Convolutional Neural Network ap-

proach. Fig. 6(b) illustrates the success rate error among

proposed methods and DeepPrior. DeepPrior shows the

lowest accuracy. This could be because of the high pose

variability and presence of occlusions [15]. We trained

DeepPrior with 300K samples, 200 epochs and learn-

ing rate 0.001. We also show some qualitative results in

Fig. 11(a).

Evaluation on MSRA dataset. To report results and

compare to the state-of-the-art on this dataset we applied

a 9-fold cross validation, where each fold corresponds

to one subject. Fig. 6(c) illustrates success rate of our

baseline approach comparing to [28]. Table 1 shows

per-joint average error in comparison to state-of-the-art

approaches. Notice that our baseline method clearly

outperforms most of the state-of-the-art approaches on

this dataset. This dataset has a uniform distribution of

pose and viewpoint and these results show the robustness

and accuracy of our methodology against highly variable

poses. Fig. 11(b) shows some qualitative results on this

dataset.

Evaluation on NYU dataset. To evaluate our pro-

cedure on this dataset, we first extracted non-redundant

training samples to balance data and generated new sam-

ples by randomly rescaling hands to make RF robust

against hand size. We used 76K samples in total. We

compared our greedy approach with [36], [16] and [26]

on this dataset. Quantitative results are shown in Fig. 6.

Although our approach performs worse than [16] for error

thresholds larger than 35mm for worst case joints error in

Fig. 6(d), it outperforms [16] for average joints error in

Fig. 6(e) with a large margin. As we show qualitatively

in Fig. 12, one can see that RF estimation is quite noisy
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in the last column. This shows a lack of data in the train-

ing set to cover uncommon cases. This leads to a wrong

nearest neighbor extraction which directly affects accu-

racy, main reason of larger number of worst case errors

for higher error thresholds. Average error on this dataset

is 14.19mm.

Comparing to model-based approaches. We also

compare our approach with model-based state-of-the-art

approaches [29, 31, 9, 34] on NYU dataset. For evalua-

tion, all mentioned approaches use the first 2440 frames

in NYU testset which belong to the same subject in train-

ing set. In general they do not evaluate on multi-subject

datasets. We keep the same protocol for comparison. We

show the results in Fig. 6(f). As one can see, our ap-

proach outperform [29, 31, 9] approaches. Similar to us,

Tagliasacchi et al. [29] include ICP in energy function to

compute 3D point cloud fitting error to the model. They

also use a temporal smoothness pose prior energy in the

function. However, our approach shows a more robust

model fitting for error thresholds lower than 16mm. Tay-

lor et al. [34] approach is the only work performing bet-

ter than our method. They use parametric hand model in

[9], which has shape and pose parameters, and apply a

(a)

(b)

Figure 11: Qualitative results. a) Comparing different approaches on

SyntheticHand dataset. Rows from top to bottom: depth image, seg-

mentation, baseline, greedy, and DeepPrior [15]. The columns show

frames 1, 12, 27, 42, 75, 83, 244, 301 and 352 from left to right. b)

Results on MSRA dataset [28]. Rows from top to bottom: depth image,

groundtruth, and our baseline estimation.

complex function in the optimization. Although paramet-

ric hand model has capability to model different shapes

and poses, its high-dimensionality may be problematic in

22



Figure 12: Qualitative images for NYU dataset. Rows from top to bot-

tom: depth image, groundtruth pose, RF segmentation, refined hand seg-

mentation and estimated pose. We show a failure case in the last column

where a wrong nearest neighbor affects accuracy.

optimization for hard cases. Therefore, they minimize a

temporal energy function to fit shape parameters to the

subject. Then they fix shape parameters and optimize

pose parameters. In practice they do not evaluate this ap-

proach on multi-subject datasets for hand pose recovery.

However, the use of ICP in our approach shows its ef-

fectiveness in multi-subject datasets. We also use a low-

dimensional pose space that can be handled by PSO effi-

ciently thanks to sampling from predefined poses which

also allows realistic poses in occluded cases.

5. Conclusions

We presented a top-down approach for hand pose re-

covery in depth images, joining model-based and data-

driven characteristics. We also introduced a new and

large joint-annotated synthetic dataset with high degree of

self-occlusion. Training data was used to extract nearest

candidates which were used to segment hand and initial-

ize parameters of a model. We handled self-occlusions

by separately fitting each hand component based on our

proposed objective function in single frames. Then, we

refined occluded joints recovery by including a bilinear

model to optimize the parameters in a sequence of im-

ages. Evaluation on NYU dataset showed that uniform

distribution of data in terms of pose and viewpoint is crit-

ical in the accuracy of nearest shape extraction and pose

recovery. Given such uniform distribution on synthetic

and MSRA datasets, we showed that the method is robust

against highly-variable hand poses in single frames. We

showed our method is able to recover occluded joints both

efficiently and accurately in a spatio-temporal approach

given uniform temporal data distribution in the synthetic

dataset. As future work, we plan to extend Synthetic-

Hand dataset to include different hand shapes by deform-

ing groundtruth joints and interpolating hand point cloud,

as well as adding realistic noise to hand surface.
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