|
Francesco Ciompi, Oriol Pujol, Carlo Gatta, Marina Alberti, Simone Balocco, Xavier Carrillo, et al. (2012). HoliMab: A Holistic Approach for Media-Adventitia Border Detection in Intravascular Ultrasound. MIA - Medical Image Analysis, 16(6), 1085–1100.
Abstract: We present a fully automatic methodology for the detection of the Media-Adventitia border (MAb) in human coronary artery in Intravascular Ultrasound (IVUS) images. A robust border detection is achieved by means of a holistic interpretation of the detection problem where the target object, i.e. the media layer, is considered as part of the whole vessel in the image and all the relationships between tissues are learnt. A fairly general framework exploiting multi-class tissue characterization as well as contextual information on the morphology and the appearance of the tissues is presented. The methodology is (i) validated through an exhaustive comparison with both Inter-observer variability on two challenging databases and (ii) compared with state-of-the-art methods for the detection of the MAb in IVUS. The obtained averaged values for the mean radial distance and the percentage of area difference are 0.211 mm and 10.1%, respectively. The applicability of the proposed methodology to clinical practice is also discussed.
Keywords: Media–Adventitia border detection; Intravascular ultrasound; Multi-Scale Stacked Sequential Learning; Error-correcting output codes; Holistic segmentation
|
|
|
Laura Igual, Joan Carles Soliva, Sergio Escalera, Roger Gimeno, Oscar Vilarroya, & Petia Radeva. (2012). Automatic Brain Caudate Nuclei Segmentation and Classification in Diagnostic of Attention-Deficit/Hyperactivity Disorder. CMIG - Computerized Medical Imaging and Graphics, 36(8), 591–600.
Abstract: We present a fully automatic diagnostic imaging test for Attention-Deficit/Hyperactivity Disorder diagnosis assistance based on previously found evidences of caudate nucleus volumetric abnormalities. The proposed method consists of different steps: a new automatic method for external and internal segmentation of caudate based on Machine Learning methodologies; the definition of a set of new volume relation features, 3D Dissociated Dipoles, used for caudate representation and classification. We separately validate the contributions using real data from a pediatric population and show precise internal caudate segmentation and discrimination power of the diagnostic test, showing significant performance improvements in comparison to other state-of-the-art methods.
Keywords: Automatic caudate segmentation; Attention-Deficit/Hyperactivity Disorder; Diagnostic test; Machine learning; Decision stumps; Dissociated dipoles
|
|
|
Miguel Reyes, Albert Clapes, Jose Ramirez, Juan R Revilla, & Sergio Escalera. (2013). Automatic Digital Biometry Analysis based on Depth Maps. COMPUTIND - Computers in Industry, 64(9), 1316–1325.
Abstract: World Health Organization estimates that 80% of the world population is affected by back-related disorders during his life. Current practices to analyze musculo-skeletal disorders (MSDs) are expensive, subjective, and invasive. In this work, we propose a tool for static body posture analysis and dynamic range of movement estimation of the skeleton joints based on 3D anthropometric information from multi-modal data. Given a set of keypoints, RGB and depth data are aligned, depth surface is reconstructed, keypoints are matched, and accurate measurements about posture and spinal curvature are computed. Given a set of joints, range of movement measurements is also obtained. Moreover, gesture recognition based on joint movements is performed to look for the correctness in the development of physical exercises. The system shows high precision and reliable measurements, being useful for posture reeducation purposes to prevent MSDs, as well as tracking the posture evolution of patients in rehabilitation treatments.
Keywords: Multi-modal data fusion; Depth maps; Posture analysis; Anthropometric data; Musculo-skeletal disorders; Gesture analysis
|
|
|
Miguel Angel Bautista, Oriol Pujol, Fernando De la Torre, & Sergio Escalera. (2018). Error-Correcting Factorization. TPAMI - IEEE Transactions on Pattern Analysis and Machine Intelligence, 40, 2388–2401.
Abstract: Error Correcting Output Codes (ECOC) is a successful technique in multi-class classification, which is a core problem in Pattern Recognition and Machine Learning. A major advantage of ECOC over other methods is that the multi- class problem is decoupled into a set of binary problems that are solved independently. However, literature defines a general error-correcting capability for ECOCs without analyzing how it distributes among classes, hindering a deeper analysis of pair-wise error-correction. To address these limitations this paper proposes an Error-Correcting Factorization (ECF) method, our contribution is three fold: (I) We propose a novel representation of the error-correction capability, called the design matrix, that enables us to build an ECOC on the basis of allocating correction to pairs of classes. (II) We derive the optimal code length of an ECOC using rank properties of the design matrix. (III) ECF is formulated as a discrete optimization problem, and a relaxed solution is found using an efficient constrained block coordinate descent approach. (IV) Enabled by the flexibility introduced with the design matrix we propose to allocate the error-correction on classes that are prone to confusion. Experimental results in several databases show that when allocating the error-correction to confusable classes ECF outperforms state-of-the-art approaches.
|
|
|
Sergio Escalera, Oriol Pujol, & Petia Radeva. (2010). Error-Correcting Output Codes Library. JMLR - Journal of Machine Learning Research, 11, 661–664.
Abstract: (Feb):661−664
In this paper, we present an open source Error-Correcting Output Codes (ECOC) library. The ECOC framework is a powerful tool to deal with multi-class categorization problems. This library contains both state-of-the-art coding (one-versus-one, one-versus-all, dense random, sparse random, DECOC, forest-ECOC, and ECOC-ONE) and decoding designs (hamming, euclidean, inverse hamming, laplacian, β-density, attenuated, loss-based, probabilistic kernel-based, and loss-weighted) with the parameters defined by the authors, as well as the option to include your own coding, decoding, and base classifier.
|
|