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a  b  s  t  r  a  c  t

We  present  a  fully  automatic  diagnostic  imaging  test  for Attention-Deficit/Hyperactivity  Disorder  diag-
nosis assistance  based  on  previously  found  evidences  of  caudate  nucleus  volumetric  abnormalities.  The
proposed method  consists  of  different  steps:  a new  automatic  method  for  external  and  internal  seg-
mentation  of  caudate  based  on Machine  Learning  methodologies;  the  definition  of  a set  of new  volume
relation  features,  3D  Dissociated  Dipoles,  used  for caudate  representation  and  classification.  We  sepa-
eywords:
utomatic caudate segmentation
ttention-Deficit/Hyperactivity Disorder
iagnostic test
achine learning
ecision stumps

rately validate  the  contributions  using  real data  from  a pediatric  population  and  show  precise  internal
caudate  segmentation  and  discrimination  power  of  the  diagnostic  test,  showing  significant  performance
improvements  in  comparison  to  other  state-of-the-art  methods.

© 2012 Elsevier Ltd. All rights reserved.
issociated dipoles

. Introduction

Attention-Deficit/Hyperactivity Disorder is a developmental
isorder characterized by inattentiveness, motor hyperactivity, and

mpulsiveness, which represents the most prevalent psychiatric
isorder in childhood [1].  It is estimated that half of children with
DHD will display the disorder in adulthood. Given its prevalence
nd pervasiveness, ADHD imposes an enormous burden on families
nd society in terms of the number of people afflicted and the pos-
ible associated economic losses. Moreover, there are contradictory
tudies pointing to overdiagnosis, underdiagnosis, and undertreat-
ent of ADHD, which incited the debate about the difficulty of the

DHD diagnosis [2].  These facts, together with the fast-growing use
f neuroimaging techniques in ADHD research, have prompted an

∗ Corresponding author at: Dept. Applied Mathematics and Analysis, Universitat
e  Barcelona, Gran Via Corts Catalanes 585, 08007 Barcelona, Spain.
el.: +34 93 4020854; fax: +34 93 4021601.

E-mail addresses: ligual@ub.edu (L. Igual), 24744jsv@comb.cat (J.C. Soliva),
ergio@maia.ub.es (S. Escalera), rogergimenohernandez@gmail.com (R. Gimeno),
scar.vilarroya@gmail.com (O. Vilarroya), petia@cvc.uab.es (P. Radeva).
1 Tel.: +34 93 3160485; fax: +34 93 3160410.
2 Tel.: +34 93 4020853; fax: +34 93 4021601.
3 Tel.: +34 93 5942473; fax: +34 93 5942479.
4 Tel.: +34 93 4020852; fax: +34 93 4021601.

895-6111/$ – see front matter ©  2012 Elsevier Ltd. All rights reserved.
ttp://dx.doi.org/10.1016/j.compmedimag.2012.08.002
inquiry into the feasibility of an imaging test for the diagnosis of
ADHD that could represent substantial aid in clinical practice [3].

The structural MRI  has provided fairly consistent ground
research in the pediatric ADHD population. See [3] for a more exten-
sive review. In particular, the decreased volume of the right caudate
nucleus seems to be reasonably replicated across different pedi-
atric ADHD samples [4–11]. Studies in [11,12] were conducted with
male and female ADHD participants. Moreover, volumetric differ-
ences on the body of the right caudate nucleus have been found to
be significant in ADHD and control groups [4,6]. Drawing on this
finding, the authors of [13] proposed a diagnostic imaging test that
appears to achieve all purposes of the phases I (ground research)
and II (assessment of clinical adequacy) of the multiphase approach
for developing a diagnostic imaging test [14,3].  Given its good accu-
racy, it could be considered as a promising ancillary diagnostic tool
to rule out an ADHD diagnosis in the pediatric population. However,
the clinical implementation of this diagnostic test suffers from two
main drawbacks. On one hand, it lacks an appropriate and objective
segmentation system, and thus, requires experts to manually seg-
ment the involved brain structures on a slice-by-slice basis. In the
case of caudate nuclei, besides the external segmentation, which
consists in the delineation of the structure external boundaries,

internal caudate segmentation is necessary to separately examine
the head and body areas. Thus, the manual segmentation process is
extremely time consuming, and prone to inter-rater discrepancies,
limiting the power of the presented diagnostic strategy. In order to
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ccelerate the required caudate analysis and make the procedure
easible for large amount of data, an automatic approach is nec-
ssary. Nowadays, automatic external segmentation of subcortical
tructures in the brain is an active line of research, and accept-
ble solutions can be found. However, to our knowledge, there is
ot any method in the literature for automatic internal segmen-
ation of the caudate. On the other hand, the proposed diagnostic
est [13] is based on the ratio between right caudate body volume
rCBV) and the total bilateral caudate body volume (bCBV). Thus,
he method is limited to the discriminative power of this measure
ith the delicate operation of defining a threshold for it. Instead,
ew volumetric shape descriptors could be exploited to include
orphometric information and improve final classification.
The main objective of this work is to define a unique com-

letely automatic system for ADHD diagnostic test inspired by [13].
irst, we obtain a globally optimal external segmentation of the
audate in an MRI  applying the recently proposed CaudateCut
pproach [15]. We  propose a new automatic internal segmenta-
ion to separate caudate head and body areas, learning a classifier
ased on an extended set of shape features describing the caudate
egion at each slice. As a result, we consider head and body vol-
mes separately and define a set of new volumetric features, named
D Dissociated Dipoles, describing relations between caudate head
nd body areas. Finally, we build an automatic diagnostic test
y learning a Machine Learning classifier based on these caudate
olumetric features. In the experiments, we compare the results
btained by our new fully-automatic method with those obtained
y the manual procedure provided in [13] and state-of-the-art fea-
ure descriptors on real data with ADHD and control subjects. As a
esult, we show accurate internal caudate segmentation and com-
arable results obtained by the proposed automatic diagnostic test
ith respect to this manual strategy, obtaining significant perfor-
ance improvement in the diagnostic test in comparison to classic

pproaches.
The rest of the paper is organized as follows: Section 2 reviews

he related state-of-the-art work. Section 3 introduces the method
f automatic ADHD diagnostic test, detailing the internal caudate
egmentation and automatic diagnostic test. Section 4 explains
he considered material and validation protocol and shows the
xperimental results. Section 5 presents the discussion, and, finally,
ection 6 concludes the paper.

. Related work

An increasing number of research works focused on automatic
echniques for studying brain region atrophy in application to
lzheimer’s disease [16–21].  Likewise, some works have been pre-
ented related to the predictive power of MRI  in autism [22,23] and
epression [24,25]. On the contrary, no works have been presented
n ADHD in this direction.

Different methods can be exploited to extract the geometric
nformation necessary for a useful statistical study in separating
wo populations (healthy and non-healthy people) [26]. Classic
pproaches evaluate volumetric variations to explain atrophy due
o such kinds of illnesses [27]. Some state-of-the-art methods
ocused on detecting brain morphological abnormalities are based
n useful shape descriptors. In [28] authors proposed a shape
nalysis of lateral ventricles by parameterizing their surfaces and
escribed them using spherical harmonics. In [29], the authors
ropose an anatomical pattern discovery technique for learning
eatures which can potentially be image biomarkers of diseases.

ther classes of methods have been introduced for generic object
nalysis employing heat diffusion procedures on 3D shapes [30,31].
n [32], 3D Haar-like features were used to encode context in
rain tissue classification. In [26], several local tissue volumetric
ng and Graphics 36 (2012) 591– 600

measurements were computed and some of them were selected
using Support Vector Machines (SVM) for classification of struc-
tural brain MRI. The list of references included here is by no means
exhaustive. We do not intend to present a full review of exist-
ing techniques, but to present the current context and discuss a
set of works that are representative of the diversity of the pro-
posed approaches for feature extraction. Despite the large amount
of existing techniques, our target structure, the caudate nucleus, is
a small structure and many of these descriptors are not useful for
its representation.

3. Method

We  propose a method that is split into three main steps:
(1) external caudate segmentation, (2) internal caudate segmen-
tation based on shape features, and (3) ADHD diagnostic test
based on extended volumetric features. Fig. 1 shows the method
pipeline. Step 1 is performed using the recently proposed Cau-
dateCut segmentation algorithm [15] specially conceived for the
caudate boundary delineating in MRI  slices. CaudateCut integrates
an atlas-based segmentation strategy with an Graph Cut (GC)
energy-minimization framework [33]. The GC model is specially
adapted to make it suitable for segmenting small, low-contrast
structures, such as the caudate nucleus, by defining new energy
function data and boundary potentials. In particular, information
concerning the intensity and geometry is exploited and supervised
energies are added based on contextual brain structures. Bound-
ary detection using a new multi-scale edgeness measure is also
introduced. It is important to note that all of this system is fully-
automatic, including the initial definition of seeds, so no human
intervention is needed to choose these seeds. Steps 2 and 3 repre-
sent the contribution of this paper and are described in the next
subsections.

3.1. Internal segmentation: head and body separation

Given the external segmentation of the caudate nuclei in MRI
slices, it is necessary to distinguish the images of Region Of Interest
(ROI) corresponding to the caudate head from those corresponding
to the caudate body for further application of diagnostic testing.
We  use information a priori of the caudate shape in axial views of
MRI  volumes. Caudate head structure tends to be wider, while the
body tends to be elongated. An example of head and body caudate
regions are shown in Fig. 2(a)–(c). Moreover, first caudate slices in
the axial projection of the MRI  volumes always correspond to the
head and the final to the body.

We propose two  different strategies to perform the internal seg-
mentation. Both methods are based on internal landmarks and thus,
avoid localizing the caudate’s neighbor structures used as external
references. First, we  present an automatic method implementing
the geometric criterion analysis proposed in [4] by using Computer
Vision techniques. Second, we  use new shape features and SVM
to learn a classifier able to recognize head and body ROI shapes.
Finally, we  apply a postprocessing step based on Decision Stumps
to filter the slice classification and improve the final classification.

3.1.1. Automatic geometric criterion
Authors in [4] define the following geometric criteria accord-

ing to which the caudate head or body ROIs fulfill the following
inequalities in the general cases:

h(H) ≤ 2,
h(B)

> 2, (1)

w(H) w(B)

where H and B denote head and body ROIs, and h and w are the
height and width of the ROI, respectively. The underlying idea of
these geometric criteria is relatively intuitive and the automation
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Fig. 1. Overview of the proposed 

s simple. We  follow the next steps: first, the MRI  volumes must be
riented in the AC-PC line [34]. Second, the MRI  caudate slices with
OI whose bounding box area is lower than a threshold T area are
iscarded in order to avoid noisy regions. Then, the two larger hori-
ontal and vertical lines within the ROI are computed (Fig. 2(b)–(d)).
inally, the geometric criterion is directly applied using the length
f these two  lines (in pixels) and the slice is classified as head or
ody.

One of the main problems with this strategy is the small range
f values the relation h/w takes. For most of the images, these rela-
ions take values near the threshold, 2, defined in Eq. (1).  This
roximity to the threshold implies difficulties in the definition of
he border between head and body slices. Thus, in the final classi-
cation, images belonging to different parts of the caudate appear
ixed. An example of the ROI classification can be seen in Fig. 3(a),
here the second image of the sequence is incorrect. This result
s not in accordance with the condition in which the first cau-
ate images correspond to the caudate head and the last ones to
he caudate body, and they are not mixed. In order to avoid these
inds of errors, a post processing method based on the a priori

ig. 2. Example of (a) caudate head image, and (c) caudate body image, with caudate nu
OI  with the two larger horizontal and vertical lines depicted. (For interpretation of the r
he  article.)
utomatic diagnostic test pipeline.

knowledge of the problem is applied. This post-process is explained
in the following sections.

3.1.2. Learning shapes
In order to improve internal caudate segmentation, we propose

an alternative method based on the extraction of an extended set
of shape features describing the caudate region for each slice and
their classification using SVM. The set of features are composed of
the following properties of the ROI: ROI area, ratio between height
and width of the ROI, height, width and area of the bounding box
containing the ROI, extent (ratio of pixels in the ROI and pixels in
the total bounding box), major and minor axis length of the ellipse
that has the same normalized second central moments as the ROI,
orientation of the ellipse, eccentricity (ratio of the distance between
the foci of the ellipse and its major axis length), perimeters ratio
(relation between the perimeter of the circle with the same area

as the ROI, and the perimeter of the ROI), and x and y coordinates
of the ROI centroid. See Fig. 3(b) for an illustration of a ROI and its
bounding box (red), ellipse (blue), and centroid (orange). Once we
compute the set of features of the caudate regions for all the slices

clei marked in red and green, respectively. Examples of (b) head ROI and (d) body
eferences to color in this figure legend, the reader is referred to the web  version of
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F ample of a ROI with its bounding box (red), ellipse (blue), and centroid (orange). (For
i to the web version of the article.)
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ig. 3. (a) Example of images classified as head (H) and body (B) images. (b) Ex
nterpretation of the references to color in this figure legend, the reader is referred 

e use SVM classifier to build a system able to classify head and
ody caudate regions.

.1.3. Post-processing
Decision stump (DS) is a machine learning model that consists

f one-level decision tree [35]. That means the system is configured
s the root node which is immediately connected to the terminal
odes. A DS makes a polarity prediction based on the value of just

 single input feature. When the DS works on continuous features,
sually a threshold feature value is selected, and the stump con-
ains two leaves (for values below and above the threshold). DS
s often used as a weak classifier [36] in machine learning ensem-
le techniques such as bagging and boosting. Here, we apply DS to
nd a unique separation between caudate head and body images
nd obtain a homogeneous classification. Thus, images classified as
ead in the middle of body sections, or vice versa, are relabeled.

The procedure is the following. The error weight for each class
s set to 1 divided by the number of occurrences for each class:

e(Head) = 1
#Head images

e(Body) = 1
#Body images

A loss function, Fx, describing the importance in the order
f appearance of head or body images is defined for each class.
revious analysis says that the disposition of the samples is the
ollowing: between 60 and 70% of the MRI  caudate slices for each
ubject corresponds to the caudate head, while 30–40% are from
he caudate body. For this reason, the downfall curve that repre-
ents each class (head and body) along all the slice positions in the
lassification is defined in a different way. In the head class, the
rop curve is set as linear:

x(Head) = 1  − iCounter

num Elements
,

hile for the body, two cases are studied, quadratic and cubic slope:

x(Body) = iCounterd

num Elementsd
, d = {2, 3}

Fig. 4 illustrates the loss functions for head (linear) and body
cubic). In this way, we strongly penalize the apparition of body
egions in the first positions. Once the weight and loss function are
efined, the system search for the optimal division between cau-
ate head and body sections in terms of error, computing it as ωe · Fx.
he position giving the smallest error is selected as the separation
osition and the images are consequently relabeled. After apply-

ng DS, the non-homogeneous classifications disappeared, and the
lobal classification can be, in consequence, improved. Fig. 5 shows
wo examples of classification improvements using DS. Note that
n the second case, even if there is an improvement, the result is
ot perfect compared to the GT data.
.2. Diagnostic test

The objective of the diagnostic test is to classify MRI  volumes
s corresponding to ADHD and control subjects. In [13], authors
Fig. 4. Loss response function for each class (head and body).

presented a diagnostic test to assist in the diagnosis of ADHD in
children based on the ratio

r0 = rCBV

bCBV
. (2)

Using the Receiver Operating Characteristic (ROC) curve analysis
on this ratio, the Optimal Cut-Off Value (OCOV) is estimated as
the optimal ratio for which the specificity is greater or equal to
a threshold Thspec, and can be applied to classify new subjects.

The previous diagnostic test synthesizes the group caudate dif-
ferences in one ratio value and performs decision with it. Contrarily,
we look for useful morphometric features of the caudate which
could amplify these group differences. We  introduce a simple but
efficient region-based feature representation and learn the opti-
mal  frontier between ADHD and control groups using a machine
learning approach. Based on the internal segmentation of the cau-
date nucleus, we extend the feature set using volume relations
between parts of caudate head and body. In particular, our fea-
ture description methodology is inspired by the Haar-like feature
representation and the generalized set of features named Disso-
ciated Dipoles [37,38]. Haar-like features are biologically inspired
features characterized by computational simplicity: for each voxel,
it is possible to extract a value obtained by the weighted sum of
the intensities on the area spanned by a template, with the sum of
the weights being zero. There are many types of templates, usu-
ally dense blocks of various sizes and subdivisions oriented along
three dimensions. Haar-like features have already been success-
fully used in the field of computational vision [39], where they
usually come along with a robust method of supervised classifi-
cation. The Haar-like features have been recently extended to be
computed in 3D volumes and used in several MRI  applications
[40,32,41]. On the other hand, Dissociated Dipoles [38] generalize
Haar-like features by including non-local comparisons. Dissociated
Dipoles representation allows the computation of feature relations
from non-contiguous blocks, being that the Haar-like features a
particular subset. In this work, we propose and use the new 3D Dis-
sociated Dipoles to measure the volume relations among a set of
3D caudate blobs. These volume relations are strategically defined
among the caudate head and body segmented regions. In particular,
we proceed as follows: given volumetric right and left head Hr

i
, Hl

i

and body Br

i
, Bl

i
regions for subject i, we split each Hi and Bi vol-

ume  in two height equidistant volumes, Hij and Bij, ∀j ∈ {1, 2}, and
compute all pairs of volume relations without repetitions, which
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ing the caudate structure in four equidistant volumes, without
considering the caudate head and body areas. GDD  can be seen
as a simplification of the proposed Dissociated Dipoles features.
ig. 5. Two examples of the Decision Stumps performance. In (a), DS works corre
ompared with the GT.

esults in 7 + 6 +5 + 4 +3 + 2 +1 = 28 relations. The volume relations
or subject i can be formally defined as follows:

ij =
{

vol(Hl
ij)

vol(Bk
im)

}
j,m∈{1,2},k∈{l,r},H,B∈{H,B}

, {H, j, l} /= {B, m, k}. (3)

here vol(·) represents the absolute volume in voxels of the corre-
ponding 3D region defined by the argument ‘·’. Thus, the set of
D Dissociated Dipoles features rij together with the previously
efined ratio, r0, form a final feature vector of 29 elements for
ach subject. An illustrative example of the feature regions for a
iven segmented left and right head (red) and body (green) caudate
egions are shown in Fig. 6. Moreover, in the case that the number of
onsidered features and volumes was larger, the proposed feature
et can be efficiently computed using an integral image represen-
ation [42]. Then, we learn a binary ADHD diagnostic test classifier
sing SVM.

. Experiments and results

In this section, we present the experiments and results obtained
or caudate segmentation and classification. Before presenting the
esults, we first describe the considered database, the methods of
he comparison and the validation protocol. Then, we detail the
btained results for (1) the caudate segmentation, as well as its
omparison with a standard approach, (2) evaluate the new auto-
atic ADHD diagnostic test, and (3) compare it with the manual

trategy and other state-of-the-art methods for significant analysis.

.1. Image database

URNC database includes 39 children (35 boys and 4 girls) with
DHD, according to DSM-IV, referred from the Unit of Child Psy-
hiatry at the Vall d’Hebron Hospital in Barcelona, Spain, and
oordinated by the Unit of Research in Cognitive Neuroscience
URNC) at the IMIM Foundation, together with 39 control sub-
ects (27 boys and 12 girls) recruited from the community. The

ean age of the groups was 10.8 (SD: 2.9) and 11.7 (SD: 3), respec-
ively. The groups were matched for handedness and IQ. All subjects
nderwent a MRI  examination with a 1.5 T system (Signa, Gen-
ral Electric, Milwaukee, WI,  USA). We  performed a volumetric
ast spoiled gradient (FSPGR-T1 3D) axial sequence (TR = 13.2 ms;
E = 4.2 ms;  FA = 15; NEX = 1; 256 × 256 matrix), with 2-mm parti-
ions, and a dual-echo fast spin echo (FSE-DP-T2) axial sequence
TR = 3980 ms;  TE = 20/100 ms;  NEX = 2; 512 × 512 matrix), with 5-

m sections and a 2-mm gap.

Children with ADHD received a consensus diagnosis by an

xpert team. Moreover, expert annotations of the 79 individual
audate nuclei were obtained. In particular, slice by slice man-
al annotation of external caudate boundaries and caudate regions
d give the result as in the Ground Truth (GT) In (b), DS does not works correctly

identification (head and body) were performed following the pro-
cedure described in [4]. MRIcro software5 was used for volume
labeling and manipulation. Taking these annotations as Ground
Truth (GT), we have three GT sets at two  different levels available:
the external and internal caudate nucleus segmentations at the slice
level, and ADHD positive or negative diagnosis at the subject level.

4.2. Comparison methods

We compare the proposed methods for caudate internal seg-
mentation and diagnostic test with the state-of-the-art methods
enumerated in the following. All the methods are developed using
Matlab 7.7.0 6 and the matlab toolbox libsvm 7 is used for the SVM
classification.

4.2.1. Caudate internal segmentation
• Geometric criterion. Automatic method implementing the geo-

metric criterion described in Section 3.1. The threshold Tarea is
set empirically to 50 pixels.

• Shape-based classification. Automatic method based on the new
set of slice shape features and the SVM classifier approach
presented in Section 3.1. The parameters of the SVM are set
empirically by cross-validation.

4.2.2. Diagnostic test

• Ratio ROC method. ROC-based diagnostic strategy proposed in [13]
based on ratio r0 (Eq. (2)). Manual ratio stands for the manu-
ally computation of the ratio using manual external and internal
segmentations of caudate nuclei. Auto ratio means that the com-
putation of the ratio uses the results of the automatic shape-based
classification of caudate ROI images previously segmented by
CaudateCut method.

• GHKS method. Diagnostic tests using Global Heat Kernel Signa-
ture (GHKS) feature extraction method [30] and a classification
technique. GHKS feature extraction method is implemented as
described in [30] with the following parameters: number of
eigenvalues 200, number of bins 10, range of the scale-space is
defined by 400 logarithmically equally spaced points between
log(0.00001)/log(10) and log(500,000)/log(10).

• GDD method. Diagnostic tests using Global Dissociated Dipoles
(GDD) and a classification technique. GDD are defined divid-
5 www.cabiatl.com/mricro/.
6 Code of all the methods are public upon to request to the authors of the paper.
7 www.csie.ntu.edu.tw/cjlin/libsvm/.

http://www.cabiatl.com/mricro/
http://www.csie.ntu.edu.tw/cjlin/libsvm/
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ig. 6. (a) Example of 3D automatic segmented caudate regions (head in red and b
osterior diagnostic test. (For interpretation of the references to color in this figure

ADA method. Our Automatic Diagnostic of ADHD (ADA) method
introduced in Section 3.2 based on the proposed 3D Dissociated
Dipoles (DD) features and a classification technique.

n all these methods, two state-of-the-art Machine Learning clas-
ifiers, Real Adaboost [43] and SVM, are considered and their
arameters are set empirically (see next section).

.3. Validation protocol

We compute the following three measures based on True Posi-
ive (TP), False Positive (FP), True Negative (TN) and False Negative
FN):

ccuracy = (TP + TN)
(TP + TN + FP + FN)

,

ensitivity = TP

(TP + FN)
,

pecificity = TN

(TN + FP)

In the internal caudate segmentation validation, the head label
orresponds to positive and the body label to negative. In the diag-
ostic test validation, ADHD patients correspond to positive and
ontrol subjects to negative.

In all the experiments we use 5-fold cross-validation as a vali-
ation strategy. For the internal segmentation we divide into 5
ubsets the set of 1039 caudate images from the 78 subjects. More-
ver, note that for each fold, none of the subjects in the test set is
resent in the training set. This strategy can obtain equal or more
ignificantly results than other strategies [44]. In the ratio ROC
ethod, for each fold, we performed a ROC curve analysis using

he training set to learn the OCOV as the optimal ratio threshold
here the specificity was greater or equal than 85%, and test this
COV on the test set of each 5-fold. Finally, we compute the mean
ccuracy, sensitivity and specificity of the five folds.

Finally, Adaboost and Support Vector Machine classifiers are
sed as the different classification strategies for the different exper-

ments. For Adaboost, we use 100 decision stumps as the base
lassifier. In order to train RBF and Polynomial SVM, 5-fold cross
alidation was used. For RBF SVM we tune the � parameter in the
ange [0, . . .,  1] with increments of 0.001, saving a 10% of the train-
ng data of each fold to validate the generalization capability of each
uned kernel parameter.

For a statistical test, we consider the rankings obtained esti-

ating each particular ranking rj

i
for each data sequence i and

ach system configuration j, and computing the mean ranking R for
ach configuration as Rj = (1/N)

∑
ir

j
i
, where N is the total number

f measurements. In order to reject the null hypothesis that the
 green, respectively). (b) Defined regions to compute the extended feature set for
d, the reader is referred to the web  version of the article.)

measured ranks differ from the mean rank, and that the ranks are
affected by randomness in the results, we use the Friedman test
[45]. The Friedman statistic value is computed as follows:

X2
F = 12N

k(k + 1)

⎡
⎣∑

j

R2
j − k(k + 1)2

4

⎤
⎦ , (4)

where k is the number of methods in the comparative.
Since this value X2

F is undesirably conservative, Iman and Dav-
enport [46] proposed a corrected statistic:

FF = (N − 1)X2
F

N(k − 1) − X2
F

. (5)

Once we have checked for the non-randomness of the results, we
can perform an a post-hoc test to check if one of the configurations
can be statistically singled out. For this purpose we use the Nemenyi
test [45]. The Nemenyi statistic is obtained as follows:

CD = q˛

√
k(k + 1)

6N
. (6)

4.4. Caudate nuclei segmentation results

External segmentation. Details on the validation of CaudateCut
method can be found in [15], where it is reported that it obtain
volumetric mean overlap of 82.60% on the URNC data.

Internal segmentation. In order to evaluate the two  proposed
methods for internal segmentation, we  use 5-fold cross validation
strategy over the set of caudate ROI images externally segmented
by CaudateCut method. In Fig. 7, we  summarize the comparative
among geometric criterion and shape-based classification strate-
gies in terms of accuracy, sensitivity and specificity. All the methods
obtain accuracies over 91%, but the shape-based strategies with DS
application stand out when paying close attention to accuracy val-
ues. In particular, the best strategy is the shape-based classification
using linear SVM with cubic DS. This strategy achieves accuracy,
sensitivity and specificity of 94.04%, 96.21% and 91.23%, respec-
tively. Moreover, in Fig. 7, it is possible to appreciate the benefit of
using DS for all methods. Nevertheless, the improvement obtained
by DS application is higher for shape-based classification strategies
than for geometric criterion. One of the main causes of the failure
of the automatic geometric criterion was the small range of val-
ues in the criterion. For this reason, this method introduces many
false detections, alternating head and body labels in the first clas-
sification result. This misleads the subsequent application of DS for

finding the best boundary and makes this method less useful in this
case.

In regards to sensitivity and specificity results, note that, in all
cases, the sensitivity is higher than the specificity, meaning that
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F
r

ifferent SVM kernels (linear, polynomial and RBF), and without and with DS appli-
ation. The best result is obtained by the shape-based classification with Linear SVM
nd DS achieving 94.04% accuracy.

ead ROI images are better detected than the ones correspond-
ng to body images. These kinds of results were what we expected
or the strategies based on SVM classifier, since the classification
roblem is, by definition, unbalanced (the number of head images

s approximately 20% greater than the number of body images in
he training set). Besides, analyzing the geometric criterium per-
ormance with DS, we observed that this method tends to define a
ead area larger than it was manually defined in the GT.

In Fig. 8, we show qualitative results of the classification of
he automatic shape-based method with the best classifier (Lin-
ar SVM). It can be seen that head and body ROIs have coincident
haracteristics intragroup and differences intergroup. It is impor-
ant to emphasize that after DS application the remaining errors
re placed near the boundary separating the head and body parts.

.5. Diagnostic test results

In this section, we validate the discriminative power of the pro-
osed ADA method to differentiate between control and ADHD
ubjects. We  compare it with state-of-the-art methods and the
anual method. Concretely, we evaluate the new extended DD fea-

ures used to represent the data, as well as the classification strategy
real Adaboost and SVM with RBF kernel). For this, we perform 5-

old cross-validation, where for each fold, none of the subjects in
he test set is present in the training set.

Fig. 9 summarizes the results of the validation experiments
sing automatic segmentations of the caudate nucleus. We

ig. 8. Qualitative results of internal caudate segmentation. ROIs classified as head (first r
epresents an error, since it corresponds to a body slice in the GT.
SVM classifiers. Full details can be found in Section 4.2.  The highest classification
performance (accuracy 72.48%, specificity of 85.93% and sensitivity of 60.07%) is
obtained by ADA SVM (column 8).

compare the following strategies: ROC-based diagnostic proce-
dure using ratio r0, GHKS, GDD and ADA methods with SVM and
Adaboost classifiers. The results of the methods are in terms of
accuracy, sensitivity and specificity. From these results, it can be
inferred that ADA method with SVM improves the rest of the strate-
gies in accuracy, sensitivity and specificity. The proposed strategy
achieved accuracy of 72.48%, specificity of 85.93% and sensitivity
of 60.07%. The results are improved with respect to ratio-based
methods, which implies not only, that this classifier offers better
performance than the rest, but also that the new DD features offer
more information than the ratio itself, improving the discrimina-
tion power in the final ADHD diagnostic test. Moreover, none of
GHKS and GDD methods define features able to capture the group
differences as well as ADA.

4.6. Significant analysis results

In order to deeply analyze the significance of the performances
provided for each of theses 8 strategies (manual ratio, automatic
ratio, GHKS SVM, GHKS Adaboost, GDD SVM, GDD Adaboost, ADA
SVM and ADA Adaboost), we performed a statistical test to compare
them. Fig. 10 shows the mean rank for each strategy consider-
ing the six measurements: accuracy, sensitivity and specificity for

the manual and automatic strategies. The rankings were obtained
as explained in Section 4.3.  Note that for convenience of the
experiment, we  considered diagnostic methods using manual and
automatic caudate segmentations versions of the same strategy. For

ow) and body (second row) by the automatic system. The last image in the first row
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Fig. 10. Nemenyi test result for the 8 methods

eading Fig. 10,  note that a lower value in the depicted axis signifies
 better performance of the method.

We compute the Friedman statistic value, as described in Section
.3, with k = 8 system configurations to compare, and obtain X2

F =
3.06. Since this value is undesirably conservative, we compute the
orrected statistic and we obtain FF = 2.28. With 8 configurations
nd 6 measurements, FF is distributed according to the F distribu-
ion with 7 and 35 degrees of freedom. The critical value of F(7, 35)
or 0.05 is 2.24. As the value of FF = 2.28 is higher than 2.24 we can
eject the null hypothesis.

Moreover, we perform a post hoc test to check if one of the con-
gurations can be statistically singled out. For this purpose we use
he Nemenyi statistic CD.  In our case with k = 8 system configura-
ions to compare and N = 6 measurements the critical value for a
0% of confidence is CD = 1.83. See an illustration of the resulting

nterval in Fig. 10.  As the ranking of the ADA method does not inter-
ect with the remaining system configurations ranks for that value
f the CD,  we can state that the ADA method outperforms the rest of
he methods in the presented experiments. On the other hand, the
est performance is obtained by the ADA method with SVM classi-
er. However, even if ADA SVM is the best method, the rank of this
ethod intersects with ADA Adaboost, and thus, we cannot claim

tatistical significant differences between these two classifiers.

. Discussion

.1. Technical considerations

This paper presents and validates several contributions in the
efinition of a fully automatic system for ADHD diagnostic test. To
ur knowledge, this is the first automatic system for ADHD diagno-
is present in the literature. The system contains three steps. In the
rst step, we apply the previously proposed CaudateCut to obtain
n external segmentation of the caudate nucleus in MRI, which was
reviously validated. In the second step, we define a new auto-
atic method for internal segmentation of the caudate nucleus in

he head and body areas, learning a classifier based on an extended
et of shape features describing the caudate region for each slice.
hese new features extend the geometric criterion defined by the
OI height and width relationship and include information of area,
erimeter, orientation and position of the ROI. It is important to
mphasize that this method avoids using external references, as
audate neighbor structures or anterior and posterior commissures.
his fact has two main advantages, the procedure is quicker and
ore robust, since these external landmarks are of low resolution,

mall, and thus, complex to localize and can be a potential source
f errors. We  obtained high rates of accuracy, sensitivity and speci-
city, and we improved the results compared with the automatic
ethod based on geometric criterion. The high rate performance in

he internal segmentation is crucial in the final step of the diagnos-

ic test method, since the considered volumetric features benefit
rom the head and body division. In particular, for the third step,
e present the new 3D Dissociated Dipoles features to describe

olumetric relations between left and right head and body areas of
ritical value for 90% of confidence is CD = 1.83.

the caudate and build an automatic system learning the SVM classi-
fier based on these new features. As we  show in the results, the 3D
Dissociated Dipoles features are simple but efficient, which obtain
accurate results in discriminating ADHD subjects from control
subjects in comparison to other standard and recent state-of-the-
art volume descriptors. The proposed automatic ADHD diagnostic
test obtains the best performance, even improving the previously
proposed manual strategy based on the measure of a significant
volumetric ratio. This improvement implies not only that this clas-
sifier offers better performance than the rest, but also that the new
features offer additional information than the ratio itself, improving
the discrimination power in the final ADHD diagnostic test.

An interesting point in the case of Adaboost classifier is that this
classifier simultaneously performs feature selection while learning,
and thus, we can analyze which features improve generalization in
our data set, if necessary. We  found that the ratio feature r0 (Eq.
(2)) is selected as the first choice by Adaboost in one fold and as the
second choice in the remaining folds. These findings are in accor-
dance with the morphological hypothesis stressed in [13] which
states that the right caudate body is significantly smaller.

5.2. Contribution of each novelty

Each one of the novelties presented in this paper contributes
to different aspects and in different ways to reach the final system
performance:

• The combination of the extended new shape features with SVM
and application of DS gives better results than for the automatic
version of the state-of-the-art geometric criterion method.

• The small range of values of the ratio between ROI height and
width (Eq. (1))  defined in the geometric criterium is an important
source of false positives and false negatives. The number of false
positives and negatives has been minimized using our new shape
features, which add among others, information of area, perimeter,
orientation and position of the ROI.

• The DS helps to define a proper internal boundary, and it has been
proven to improve the classification rate.

• Manual and automatic ROC-based diagnostic test based on the
ratio defined in Eq. (2) give poorer results compared with the
approaches based on machine learning classification techniques
and the new extended set of features.

• The new DD features improve the results obtained by other state-
of-the-art feature extraction methods (GHKS and GDD).

• The internal segmentation of caudate nucleus is crucial for the
definition of DD features, since the selection of GDD  without
considering head and body areas diminishes the performance.

• It is generally accepted that two  of the most useful classifier
methods are Adaboost and SVM. In general, both give good
performances in binary classification and there is no theoretic

justification to choose one over the other. We  selected Adaboost
as an example of an ensemble classifier approach and SVM as a
well known binary-classifier. Between them, SVM gave the best
results for the diagnostic test.
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Statistical significance tests are in general based on the perfor-
mance of a method over several databases or performance of
several methods over the same database. In our case, the Nemenyi
statistical test was performed comparing eight different methods
for ADHD diagnosis based on three measures (accuracy, sensitiv-
ity and specificity) over URNC database. The conclusion is that
ADA method is statistically more significant than GHKS and GDD
methods, although no significant differences are found between
classifiers (Adaboost and SVM).
The diagnostic power of the proposed fully automatic strategy is
practical and reliable, since it highly replicates the performance of
the manual diagnostic test and improves the results of the manual
method previously presented.

.3. Clinical considerations

Although DSM-IV-TR (American Psychiatric Association, 2000)
rovides a well-structured criteria based diagnosis, distinguishing
DHD from normal developmental levels of inattention, impulsi-
ity and hyperactivity remains problematic. Further complications
rise in integrating diagnostic data from different informants (e.g.,
arents and teachers; parents and children) and different settings
e.g., school, home). In these circumstances, a reliable ancillary
est with high diagnostic accuracy is called for. Optimally, this test
hould have a good diagnostic performance, be well grounded in
he previous ADHD research and allow for easy implementation
n a clinical setting. The proposed automated MRI-based diagnostic
est has a good diagnostic performance as a result of its relative high
pecificity. Given a prevalence of 10% of the ADHD in the general
ediatric population [1],  the negative predictive value approaches
5%. Therefore a negative result lowers dramatically the probability
f an ADHD positive diagnosis. It is well grounded in the previous
DHD neuroimaging research, as it relies on caudate volumetric
bnormalities that have been widely replicated in morphometric
RI  studies in ADHD samples. Finally, it is fully automated, with a

uick and easy post processing of the T1 weighted MRI  images.

. Conclusion

We presented a complete automatic method to assist in the
iagnosis of ADHD. We  were inspired by previous findings based
n the caudate nucleus anatomy differentiating ADHD and con-
rol samples in the pediatric population. The proposed approach
onsists of three steps: (1) external caudate segmentation using
he recently proposed CaudateCut segmentation algorithm, (2) a
ovel internal caudate segmentation of caudate head and body
egions, and (3) a novel ADHD diagnostic test, being steps (2) and
3) the main novelties. For steps (2) we defined a novel classifier
ystem based on shape features at slice level and for step (3) we
earned a classifier to discriminate ADHD and control subject based
n new 3D Dissociated Dipoles features. We  performed separated
alidation processes of steps (2) and (3) in real data, obtaining high
ercentages of coincidences with manual annotations in both cases
nd showing important improvements with respect to state-of-
he-art methods. The proposed diagnostic test method can detect
ubtle differences in the caudate nuclei between children with
DHD and controls, and provides significant predictive power for
roup membership. Moreover, it significantly improves diagnostic
erformance of the previously proposed manual strategy. Thus, we
onclude that this work represents a key step towards the defi-
ition of a reliable and feasible automatic method to assist in the

iagnosis of ADHD.

Future work will be devoted to study system evidences to
lassify symptom severity. We  would like to study if there is a cor-
elation between the distance from the separating hyperplane of

[
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the SVM and symptom severity. Furthermore, the method could
be easily adapted to images acquired from different MRI scanners,
after proper normalization of the data. So, we will compile new
cases and apply the proposed diagnostic test to them. In order to
extend the system to be applied to other range of ages, the system
should be retrained using examples of those populations. That is
also part of our future work.
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