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Error-Correcting Factorization
Miguel Angel Bautista, Oriol Pujol, Fernando De la Torre and Sergio Escalera
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Abstract—Error Correcting Output Codes (ECOC) is a successful tech-
nique in multi-class classification, which is a core problem in Pattern
Recognition and Machine Learning. A major advantage of ECOC over
other methods is that the multi-class problem is decoupled into a set of
binary problems that are solved independently. However, literature de-
fines a general error-correcting capability for ECOCs without analyzing
how it distributes among classes, hindering a deeper analysis of pair-
wise error-correction. To address these limitations this paper proposes
an Error-Correcting Factorization (ECF) method, our contribution is
three fold: (I) We propose a novel representation of the error-correction
capability, called the design matrix, that enables us to build an ECOC
on the basis of allocating correction to pairs of classes. (II) We derive
the optimal code length of an ECOC using rank properties of the design
matrix. (III) ECF is formulated as a discrete optimization problem, and a
relaxed solution is found using an efficient constrained block coordinate
descent approach. (IV) Enabled by the flexibility introduced with the
design matrix we propose to allocate the error-correction on classes
that are prone to confusion. Experimental results in several databases
show that when allocating the error-correction to confusable classes
ECF outperforms state-of-the-art approaches.

Index Terms—Error-Correcting Output Codes, Multi-class learning, Ma-
trix Factorization

1 INTRODUCTION

In the last decade datasets have experimented an exponential
growth rate, generating vast collections of data that need to
automatically be analyzed. In particular, multimedia datasets
have experienced an explosion on data availability, thanks
to the almost negligible cost of gathering multi-media data
from Internet. Therefore, there is a pushing need for efficient
algorithms that are able to automatize knowledge extraction
processes on those datasets. One of the classic problems in
Pattern Recognition and Machine Intelligence is to perform
automatic classification, i.e., automatically attributing a label
to each sample of the dataset. In this sense, the classification
process is often considered as first step for higher order rep-
resentations or knowledge extractions. In multi-class classifi-
cation problems the goal is to find a function f : Rn → K,
that maps samples to a finite discrete set K of labels with
|K| > 2. While there exists a large set of approaches to estimate
f all of them can be grouped in two different categories:
Single-Machine/Single-Loss approaches and Divide and Conquer
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Fig. 1. Example of a classification problem of 4 different sports
balls. Note how One vs. All or Dense Random ECOC designs
do not take into account the data distribution while the proposed
Error-Correcting Factorization method finds an ECOC matrix X
by factorizing a design matrix D. In addition, the codes (rows of
X) ECF assigns to similar categories are very dissimilar in order
to benefit from Error-Correcting principles.

approaches. The formers attempt to approximate a single f for
the complete multi-class problem, while the latter decouple f
into a set of binary sub-functions (binary classifiers) that are
potentially easier to estimate and aggregate the results.

In this sense, Error-Correcting Output Codes (ECOC) is a
divide and conquer approach that has proven to be very effec-
tive in many different multi-class contexts. The core property
within an ECOC is its capability to correct errors in binary
classifiers by using redundancy. However, existing literature
represents the error-correcting capability of an ECOC as an
scalar, hindering a deeper the analysis of error-correction and
redundancy on class pairs. Furthermore, classical divide and
conquer approaches that have been included in the ECOC
framework like One vs. All [48] or Random [2] approaches
ignore the data distribution, thus not taking profit of allocat-
ing the error-correcting capabilities of ECOCs in a problem-
dependent fashion. In addition, recent problem-dependent
ECOC designs have focused on designing the binary sub-
functions rather than analyzing the core error-correcting prop-
erty. In order to overcome this limitations, our proposal builds
an ECOC matrix by factorizing a design matrix D that encodes
the desired ’correction properties’ between classes (i.e a design
matrix which can be obtained directly from data or be set by
experts on the problem domain). The proposed method finds
the ECOC coding that yields the closest configuration to the
design matrix. We cast the task of designing an ECOC as a
matrix factorization problem with binary constraints. A visual
example is shown in Figure 1.
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2 RELATED WORK

2.1 Single-machine/Single-loss Approaches
The multi-class problem can be directly treated by some
methods that exhibit a multi-class behaviour off the shelf (i.e
Nearest Neighbours [22], Decision Trees [30], Random Forests
[6]). However, some of the most powerful methods for binary
classification like Support Vector Machines (SVM) or Adaptive
Boosting (AdaBoost) can not be directly extended to the multi-
class case and further development is required. In this sense,
literature is prolific on single-loss strategies to estimate f .
One of the most well know approaches are the extensions of
SVMs [7] to the multi-class case. For instance, the work of
Weston and Watkins [55] presents a single-machine extension
of the SVM method to cope with the multi-class case, in
which k predictor functions are trained, constrained with k−1
slack variables per sample. However, a more recent adaptation
of [14] reduces the number of constraints per samples to
one, paying only for the second largest classification score
among the k predictors. To solve the optimization problem
a dual decomposition algorithm is derived, which iteratively
solves the quadratic programming problem associated with
each training sample. Despite these efforts, single-machine
approaches to estimate f scale poorly with the number of
classes and are often outperformed by simple decompositions
[48], [52]. In recent years various works that extended the clas-
sical Adaptive Boosting method [20] to the multi-class setting
have been presented [51], [43]. In [62] the authors directly
extend the AdaBoost algorithm to the multi-class case without
reducing it to multiple binary problems, that is estimating a
single f for the whole multi-class problem. This algorithm is
based on an exponential loss function for multi-class classifi-
cation which is optimized on a forward stage-wise additive
model. Furthermore, the work of Saberian and Vasconcenlos
[50] presents a derivation of a new margin loss function for
multi-class classification altogether with the set of real class
codewords that maximize the presented multi-class margin,
yielding boundaries with max margin. However, though these
methods are consistently derived and supported with strong
theoretical results, methodologies that jointly optimize a multi-
class loss function present some limitations:
• They scale linearly with k, rendering them unsuitable for

problems with a large k.
• Due to their single-loss architecture the exploitation of par-

allelization on modern multi-core processors is difficult.
• They can not recover from classification errors on the class

predictors.

2.2 Divide and Conquer Approaches
On the other hand, the divide and conquer approach has
drawn a lot of attention due to its excellent results and easily
parallelizable architecture [48], [52], [2], [18], [46], [4], [40],
[28]. In this sense, instead of developing a method to cope
with the multi-class case, divide and conquer approaches
decouple f into a set of l binary problems which are treated
separately. Once the responses of binary classifiers are obtained
a committee strategy is used to find the final output. In this
trend one can find three main lines of research: flat strategies,
hierarchical classification, and ECOC. Flat strategies like One
vs. One [52] and One vs. All [48] are those that use a predefined
problem partition scheme followed by a committee strategy
to aggregate the binary classifier outputs. On the other hand,
hierarchical classification relies on a similarity metric distance

among classes to build a binary tree in which nodes correspond
to different problem partitions [23], [40], [28]. Finally, the ECOC
framework consists of two steps: In the coding step, a set of
binary partitions of the original problem are encoded in a
matrix of discrete codewords [16] (univocally defined, one code
per class) (see Figure 2). At the decoding step a final decision
is obtained by comparing the test codeword resulting of the
union of the binary classifier responses with every class code-
word and choosing the class codeword at minimum distance
[17], [61]. The coding step has been widely studied in literature,
yielding three different types of codings: predefined codings
[48], [52], random codings [2] and problem-dependent codings
for ECOC [18], [46], [4], [57], [24], [58]. Predefined codings like
One vs. All or One vs. One are directly embeddable in the
ECOC framework. In [2], the authors propose the Dense and
Sparse Random coding designs with a fixed code length of
{10, 15} log2(K), respectively. In [2] the authors encourage to
generate a set of 104 random matrices and select the one that
maximizes the minimum distance between rows, thus showing
the highest correction capability. However, the selection of a
suitable code length l still remains an open problem.

2.3 Problem-dependent Strategies
Alternatively, problem-dependent strategies for ECOC have
proven to be successful in multi-class classification tasks [57],
[23], [24], [58], [18], [60], [59], [46]. A common trend of these
works is to exploit information of the multi-class data distri-
bution obtained a priori in order to design a decomposition
into binary problems that are easily separable. In that sense,
[57] computes a spectral decomposition of the graph laplacian
associated to the multi-class problem. The expected most sepa-
rable partitions correspond to the thresholded eigenvectors of
the laplacian. However, this approach does not provide any
warranties on defining unequivocal codewords (which is a
core property of the ECOC coding framework) or obtaining
a suitable code length l. In [24], Gao and Koller propose a
method which adaptively learns an ECOC coding by opti-
mizing a novel multi-class hinge loss function sequentially.
On an update of their earlier work, Gao and Koller propose
in [23] a joint optimization process to learn a hierarchy of
classifiers in which each node corresponds to a binary sub-
problem that is optimized to find easily separable subproblems.
Nonetheless, although the hierarchical configuration speeds up
the testing step, it is highly prone to error propagation since
node mis-classifications can not be recovered. Finally, the work
of Zhao et. al [58] proposes a dual projected gradient method
embedded on a constrained concave-convex procedure to opti-
mize an objective composed of a measure of expected problem
separability, codeword correlation and regularization terms. In
the light of these results, a general trend of recent works is to
optimize a measure of binary problem separability in order to
induce easily separable sub-problems. This assumption leads
to ECOC coding matrices that boost the boundaries of easily
separable classes while modeling with low redundancy the
ones with most confusion.

2.4 Our approach
In this paper we present the Error-Correcting Factorization
(ECF) method for factorizing a design matrix of desired ’error-
correcting properties’ between classes into a discrete ECOC
matrix. The proposed ECF method is a general framework for
the ECOC coding step since the design matrix is a flexible
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Fig. 2. (a) SVM RBF boundaries learned from Error-Correcting Factorization along with the ECOC coding matrix X in a Toy
problem, 77.12% classification accuracy (12 classifiers are trained). (b) Boundaries learned by the Dense Random ECOC coding
design, 66.45% classification accuracy (12 classifiers are trained). (c) SVM boundaries induced by the One vs. All approach, 49.53%
classification accuracy (14 classifiers are trained).

tool for error-correction analysis. In this sense, the problem of
designing the ECOC matrix is reduced to defining the design
matrix, where higher level reasoning may be used. For exam-
ple, following recent state-of-the-art works one could build a
design matrix following a ”hard classes are left behind” spirit,
boosting the boundaries of easily separable classes and disre-
garding the classes that are not easily separable. An alternative
for building the design matrix is the ”no class is left behind”
criteria, where we may boost those classes that are prone to be
confused in the hope of recovering more errors. Note that the
design matrix could also directly encode knowledge of domain
experts on the problem, providing a great flexibility on the
design of the ECOC coding matrix. Figure 2 shows different
coding schemes and the real boundaries learned by binary
classifiers (SVM with RBF kernel) for a Toy problem of 14
classes (see section 5 for further details on the dataset). We can
see how the binary problems induced by ECF in Fig. 2(a) boost
the boundaries of classes that are prone to be confused, while
other approaches that use equal or higher number of classifiers
like Dense Random [2] in Fig. 2(b), or classic One vs. All
designs in Fig. 2(c) fail in this task. The paper is organized as
follows: Section 3 introduces the ECOC properties and derives
ECF, where we cast the problem of finding an ECOC matrix
that follows a certain distribution of correction as a discrete
optimization problem. Section 4 presents a discussion of the
method addressing important issues from the point of view
of the ECOC framework. Concretely, we derive the optimal
problem-dependent code length for ECOCs obtained by means
of ECF, which to the best of our knowledge is the first time
this question is tackled in the extended ECOC literature. In
addition, we show how ECF converges to a solution with
negligible objective value when the design matrix follows
certain constraints. Section 5 shows how ECF yields ECOC
coding matrices that obtain higher classification performances
than state-of-the-art methods with comparable or lower com-
putational complexity. Finally, Section 6 concludes the paper.

3 METHODOLOGY

In this section, we review existing properties of the ECOC
framework and propose to cast the ECOC coding matrix opti-
mization as a Matrix Factorization problem that can be solved
efficiently using a constrained coordinate descent approach.

3.1 Error-Correcting Output Codes
ECOC is a multi-class framework inspired on the basis of error-
correcting principles of communication theory [16], which is
composed of two different steps: coding [16], [2] and decoding
[17], [61]. At the coding step an ECOC coding matrix X ∈
{−1,+1}k×l (see notation1) is constructed, where k denotes
the number of classes in the problem and l the number of
bi-partitions (also known as dichotomies) to be learnt. In the
coding matrix, the rows (xi’s, also known as codewords) are
unequivocally defined, since these are the identifiers of each
category in the multi-class problem. On the other hand, the
columns of X (xj ’s) denote the bi-partitions to be learnt by
base classifiers (also known as dichotomizer). Therefore, for a
certain column a dichotomizer learns the boundary between
classes valued +1 and classes valued −1. However, [2] intro-
duced a third value, defining ternary valued coding matrices.
X ∈ {−1,+1, 0}k×l. In this case, for any given dichotomy
categories can be valued as +1 or −1 depending on the
meta-class they belong to, or 0 if they are ignored by the
dichotomizer. This new value allows the inclusion of well-
known decomposition techniques into the ECOC framework,
such as One vs. One [52].

At the decoding step a data sample s is classified among
the {c1, . . . , ck} possible categories. In order to perform the
classification task, each dichotomizer predicts a binary value
for s whether it belongs to one of the bi-partitions defined
by the correspondent dichotomy. Once the set of predictions
y ∈ {−1,+1}l is obtained, it is compared to the rows of X
using a distance function δ, known as the decoding function.
Usual decoding techniques are based on well-known distance
measures such as the l1 or Euclidean distance. These measures
are proved to be effective for X ∈ {+1,−1}k×l. Nevertheless,
it is not until the work of [17] that decoding functions took
into account the meaning of the 0 value at the decoding step.
Generally, the final prediction for s is given by the class ci,
where arg

i
min δ(xi,y), i ∈ {1, . . . , k}.

1. Bold capital letters denote matrices (e.g. X), bold lower-case letters
represent vectors (e.g., x). All non-bold letters denote scalar variables.
xi is the i−th row of the matrix X. xj is the j−th column of the matrix
X. 1 is a matrix or vector of all ones of the appropriate size. xij denotes
the scalar in the i−th row and j−th column of X. ‖X‖F = tr(X>X)
denotes the Frobenius norm. ‖·‖p is used to denote the Lp-norm. x⊕y
is an operator which concatenates vectors x and y . rank(X) denotes
the rank of X. X ≤ 0 denotes the point-wise inequality
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3.2 Good practices in ECOC

Several works have studied the characteristics of a good ECOC
coding matrix [16], [36], [3], [57], [4], which are summed up in
the following three properties:

1) Correction capability: let H ∈ Rk×k denote a symmetric
matrix of hamming distances among all pairs of rows in
X, the correction capability is expressed as bmin(H)−1

2
c 2,

considering only off-diagonal values of H. In this sense,
if min(H) = 3, ECOC will be able to recover the correct
multi-class prediction even if b 3−1

2
c = 1 binary classifier

misses its prediction.3

2) Uncorrelated binary sub-problems: the induced binary
problems should be as uncorrelated as possible for X to
recover binary classifier errors.

3) Use of powerful binary classifiers: since the final class
prediction consists of the aggregation of bit predictors,
accurate binary classifiers are also required to obtain
accurate multi-class predictions.

3.3 From global to pair-wise correction capability

In literature, correction capability has been a core objective
of problem-dependent designs of X. In this sense, different
authors have always agreed on defining correction capability
for an ECOC coding matrix as a global value [16], [2], [36],
[57], [23], [25]. Hence, min(H) is expected to be large in order
for X to recover from as many binary classifier errors as
possible. However, since H expresses the hamming distance
between rows of X, one can alternatively express the correction
capability in a pair-wise fashion [5], allowing for a deeper
understanding of how correction is distributed among code-
words. Figure 3 shows an example of global and pair-wise
correction capabilities calculation. Recall that the ⊕ operator
between two vectors denotes its concatenation. Thus, the pair-
wise correction capability is defined as follows:

4) The pair-wise correction capability of codewords xi

and xj is expressed as: bmin(hi⊕hj)−1
2

c, where we only
consider off-diagonal values of H. This means that a
sample of class ci is correctly discriminated from class
cj even if bmin(hi⊕hj))−1

2
c binary classifiers miss their

predictions.

Note that though in Figure 3 the global correction capability
of X is 0, there are pairs of codewords with a higher correction,
e.g. x2 and x8. In this case the global correction capability
as defined in literature is overlooking ECOC coding charac-
teristics that can potentially be exploited. This novel way of
expressing the correction capability of an ECOC matrix enables
a better understanding of how ECOC coding matrices dis-
tribute their correction capability, and gives an insight on how
to design coding matrices. In this sense, it is straightforward
to demand the correction capabilities of the ECOC matrix to
be allocated according to those classes that are more prone to
error, in order for them to have better recovery behavior (i.e.
following a ”no class is left behind” criteria). However, recent
works [57], [23], [58] have focused on designing a matrix X
where binary problems are easily separable. This assumption
leads to a matrix X where classes that are not easily separable

2. In the case of ternary codes this correction capability can be easily
adapted.

3. Note that for X to be valid all off-diagonal elements of H should
be greater or equal than one.
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Fig. 3. Example of global versus pair-wise correction capability.
On the left side of the figure the calculation of the global
correction capability is shown. The right side of the image shows
a sample of pair-wise correction calculation for codewords x2

and x8.

show a small hamming distance on their respective codewords
(i.e. following a ”hard classes are left behind” scheme).

In addition to the proposal of a general method for ECOC
coding by means of the definition of a design matrix, we
explore the effect of focusing the learning effort of our method
in those classes that have complex boundaries (i.e. those which
show a small inter-class margin). It is important to take into
account that though it is natural to estimate the design matrix
from training data, it is not a limitation of ECF. In this sense,
the design matrix can also code information of experts or any
other distance measure directly set by the user. Formally, let
X ∈ {−1,+1}k×l be a coding matrix, let H be a symmetric
matrix of pair-wise l1 distances between rows of X and let
D ∈ Rk×k be a design matrix (e.g. pair-wise distance measure
between class codewords). It is natural to see that the ordinal
properties of the distance should hold in H and D. Thus, if
distance between codewords xk and xl (dkl) is required to be
larger than the distance between codewords xi and xj (dij),
this order should be maintained in H. Then we want to find a
configuration of X such that hij < hkl ⇐⇒ dij < dkl∀i,j,k,l.

Note that the l1 distances in H can be seen as a function
of the dot product of the codewords ‖xi − xj‖1 = −(xixj>)+l

2
,

where x ∈ {−1,+1} . Therefore, instead of directly requiring
H to match D, we can equivalently require the product XX>

to match D [54]. This implies that we can cast the problem of
finding X into a Matrix Factorization problem, where we find
an X so that the matrix of inner products XX> is closest to D
under a given norm.

3.4 Error-Correcting Factorization

This section describes the objective function and the optimiza-
tion strategy for the ECF algorithm.

3.4.1 Objective

Our goal is to find an ECOC coding matrix that encodes the
properties denoted by the design matrix D. In this sense, ECF
seeks a factorization of the design matrix D ∈ Rk×k into a
discrete ECOC matrix X. This factorization is formulated as
the quadratic form XX> that reconstructs D with minimal
Frobenius distance under several constraints, as shown in
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Equation (1) 4.

minimize
X

‖D−XX>‖2F (1)

subject to X ∈ {−1,+1}k×l (2)

XX> −P ≤ 0 (3)

X>X− 1(l − 1) ≤ 0 (4)

−X>X− 1(l − 1) ≤ 0 (5)

The component X∗ ∈ {−1,+1}k×l that solves this optimiza-
tion problem generates the inner product of discrete vectors
that is closest to D under the Frobenius norm. In order for X
to be a valid matrix under the ECOC framework we constraint
X in Equations (2)-(5). Equation (2) ensures that each binary
problem classes will belong to one of the two possible meta-
classes. In addition, to avoid the case of having two or more
equivalent rows in X, the constraints in 3 ensure that the
correlation between rows of X less or equal than a certain
user-defined matrix −1l ≤ P ≤ 1l (recall that 1 denotes a
matrix or vector of all 1s of the appropriate size when used),
where P encodes the minimum distance between any pair of
codewords. P is a symmetric matrix with pii = l ∀i. Thus,
by setting the off diagonal values in P we can control the
minimum inter-class correction capability. Hence, if we want
the correction capability of rows xi and xj to be b c−1

2
c, we set

pi = pj = 1(l − c).
Finally, constraints in Equations (4) and (5) ensure the in-

duced binary problems are not equivalent. Similar constraints
have been studied thoroughly in literature [16], [36], [25]
defining methods that rely on diversity measures for binary
problems to obtain a coding matrix X. Equations (4) and (5)
can be considered as soft-constraints since its violation does not
imply violating the ECOC properties in terms of row distance.
This is easy to show since a coding matrix X ∈ {−1,+1}k×l

that induces some equivalent binary problems but ensures that
XX> ≤ 1(l− 1), ∀i, j : i 6= j will define a matrix whose rows
are unequivocally defined. In this sense, a coding matrix X can
be easily projected on the set defined by constraints (4) and (5)
by eliminating repeated columns, X = xj : xj 6= xi∀j 6= i.
Thus, constraints in 4 and 5 ensure that uncorrelated binary
sub-problems will be defined in our coding matrix X. The
discrete constraint in Equation 2 on the variable elevates
the optimization problem to the NP-Hard class. To overcome
this issue and following [13], [58], [8] we relax the discrete
constraint in 2 an replace it by X ∈ [−1,+1]k×l in Equation 7.

3.4.2 Optimization
In this section, we detail the process for optimizing X. The min-
imization problem posed in Equation (1) with the relaxation
of the boolean constraint in Equation (2) is non-convex, thus,
X∗ is not guaranteed to be a global minimum. In this sense,
although gradient descent techniques have been successfully
applied in the literature to obtain local minimums [49], [35],
[1] these techniques do not enjoy the efficiency and scalability
properties present in other optimization methods applied to
Matrix Factorization problems, such as Coordinate Descent
[37], [15]. Coordinate Descent techniques have been widely
applied in Nonnegative Matrix Factorization obtaining satis-
fying results in terms of efficiency [34], [31]. In addition, it has

4. Recall that the l1 distance is a function of the dot product ‖xi −
xj‖1 =

−(xixj>)+l
2

.

been proved that if each of the coordinate sub-problems can
be solved exactly, Coordinate Descent converges to a stationary
point [29], [53]. Using this result, we decouple the problem in
Equation (1) into a set of linear least-squares problems (one
for each coordinate). Therefore, if the problem in Equation
(1) is going to be minimized along the i−th coordinate of
X, we fix all rows of X except of xi and we substitute X

with
[
xi

X′i

]
in Equations (1) and (3), where X′i denotes matrix

X after removing the i−th row. In addition, we substitute D

with
[
l di

diT D′i′i

]
, where D′i′i denotes the matrix D after re-

moving the i−th row and column. Equivalently, we substitute

P =

[
l pi

piT P′i′i

]
, obtaining the following block decomposition:

minimize
xi

∥∥∥∥∥
[
l di

diT D′i′i

]
−

[
xixiT X′ixi

X′ixiT X′iX′i
>

]∥∥∥∥∥
2

F

(6)

subject to xi ∈ [−1,+1]l (7)[
xixiT X′ixi

X′ixiT X′iX′i
>

]
−
[
l pi

piT P′i′i

]
≤ 0. (8)

Analyzing the block decomposition in Equation (6) we can
see that the only terms involving free variables are xixi>,
X′ixi and X′ixi>. Thus, since D and XX> are symmetric by
definition, the minimizer xi∗ of Equation (6) is the solution to
the linear least-squares problem shown in Equation (9):

minimize
xi

∥∥∥X′ixi − di
∥∥∥2
2

(9)

subject to −1 ≤ xi ≤ +1 (10)

X′ixi − pi ≤ 0, (11)

where constraint (10) is the relaxation of the discrete con-
straint (2). In addition, constraint (11) ensures the correlation
of xi with the rest of the rows of X is below a certain value
pi. Algorithm 1 shows the complete optimization process.

Algorithm 1: Error-Correcting Factorization Algorithm.

Data: D̃ ∈ Rk×k,P ∈ Nk×k, l
Result: X ∈ {−1,+1}k×l

begin
repeat

foreach i ∈ {1, 2, . . . , k} do
xi ← minimize

xi∈Rl

∥∥X′ixi − di
∥∥2
2
, subject to :

−1 ≤ xi ≤ +1, X′ixi − pi ≤ 0;

X← ε-suboptimal(X);
X = {xj : xj 6= xi∀j 6= i}; // Projection step
to remove duplicate columns

until convergence;

To solve the minimization problem in Algorithm 1 we use
the Active Set method described in [26], which finds an ini-
tial feasible solution by first solving a linear programming
problem. Once ECF converges to a solution X∗ with objective
value fobj(X∗) we obtain a discretized ε-suboptimal solution
X ∈ {−1,+1} with objective value fobj(X) by sampling
1000 points that split the interval [−1,+1] and choosing the
point that minimizes ‖fobj(X∗)−fobj(X)‖2. Finally, we discard
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repeated columns if any appear 5.

3.5 Connections to Singular Value Decomposition, Near-
est Correlation Matrix and Discrete Basis problems
Similar objective functions to the one defined in the ECF
problem in Equation (1) are found in other contexts, for ex-
ample, in the Singular Value Decomposition problem (SVD).
The SVD uses the same objective function as ECF subjected to
the constraint XX> = I. However, the solution of SVD yields
an orthogonal basis, disagreeing with the objective defined in
Equation (1) which ensures different correlations between the
xi’s. In addition, we can also find a common ground with
the Nearest Correlation Matrix (NMC) Problem [32], [9], [39].
However, the NMC solution does not yield a discrete factor X,
instead it seeks directly for the Gramian XX> where X is not
discrete, as in Equation (12).

minimize
X

‖X−D‖2F (12)

subject to X � 0 (13)

cXc> = b (14)

In addition, the ECF has similarities with the Discrete Basis
Problem (DBP) [42], since the factors are X discrete valued.
Nevertheless, DBP factorizes D ∈ {0, 1}k×k instead of D ∈
Rk×k, as show in Equation (15).

minimize
X,Y

‖X ◦Y −D‖1 (15)

subject to X,Y,D ∈ {0, 1} (16)

4 DISCUSSION

In this section we discuss how to ensure that the design matrix
D is valid, as well as how to automatically estimate the code
length for each problem given D. Furthermore, we analyze the
convergence of ECF in relation to the order of updating the
coordinates. Finally we show that under certain conditions of
D ECF converges to a solution with almost negligible objective
value.

4.1 Ensuring a representable design matrix
An alternative interpretation for ECF is that it seeks for a
discrete matrix X whose Gramian is closest to D under the
Frobenius norm. However, since D can be directly set by the
user we need to guarantee that D is a correlation matrix that
is realizable in the Rk×k space, that is, D has to be symmetric
and positive semi-definite. In particular, we would like to find
the correlation matrix D̃ ∈ Rk×k that is closest to D under
the Frobenius norm. This problem has been treated in several
works [32], [9], [11], [27], resulting in various algorithms that
often use an alternating projections approach. However, for this
particular case in addition to be in the Positive Semidefinite
(PSD) Cone and symmetric we also require D to be scaled
in the [−l,+l] range, with δ̃ii = l∀i. In this sense, to find
D̃ we follow an alternating projections algorithm, similar as
[32], which is shown in Algorithm 2. We first project D into
the PSD cone by computing its eigenvectors and recovering
D = V diag(λ+)V>, where λ+ are the non-negative eigen-
values of D. Then, we scale D in the range [−l,+l] and set
δii = l∀i.

5. In all our runs of ECF this situation happened with a chance of
less than 10−5%.

Algorithm 2: Projecting D into the PSD cone with addi-
tional constraints.

Data: D ∈ Rk×k

Result: D̃ ∈ Rk×k

begin
repeat

D← V diag(λ+)V>;
D← D ∈ [−l,+l]k×k;
D← dii = l∀i;

until convergence;

4.2 Defining a code length with representation guarantees

The definition of a problem-dependent ECOC code length l,
that is, choosing the number of binary partitions for a given
multi-class task is a problem that has been overlooked in
literature. For example, predefined coding designs like One vs.
All or One vs. One have fixed code length. On the other hand,
coding designs like Dense or Sparse Random codings (which
are very often used in experimental comparisons [57], [58], [4],
[18]) are suggested [2] to have a code length of d10log2(k)e
and d15log2(k)e respectively. These values are arbitrary and
unjustified. Additionally, to build a Dense or Sparse Random
ECOC matrix one has to generate a set of 1000 matrices and
chose the one that maximizes min(H). Consider the Dense
Random Coding design, of length l = d10 log2(k)e, the ECOC
matrix will have in the best case a correction capability of
b 10−1

2
c = 4, independently of the distribution of the multi-class

data. In addition, the effect of maximizing min(H) leads to an
equi-distribution of the correction capability over the classes.
Other approaches, like Spectral ECOC [57] search for the code
length by looking at the best performance on a validation set.
Nevertheless, recent works have shown that the code length
can be reduced to of l = log2(k) with very small loss in
performance if the ECOC coding design is carefully chosen
[38] and classifiers are strong. In this paper, instead of fixing
the code length or optimizing it on a validation subset, we
derive the optimal length according to matrix rank properties.
Consider the rank of a factorization of D into XX>, there are
three different possibilities:

1) If rank(XX>) = rank(D), we obtain rank factorization
algorithm that should be able to factorize D with minimal
error.

2) In the case when rank(XX>) < rank(D) we obtain a
low-rank factorization method that cannot guarantee to
represent D with 0 error, but reconstructs the components
of D with higher information.

3) If rank(XX>) > rank(D), the system is overdetermined
and many possible solutions exist.

In general we would like to reconstruct D with minimal
error, and since rank(X) ≤ min(k, l) and k (the number of
classes) is fixed, we only have to set the number of columns
of X to control the rank. Hence, by setting rank(X) = l =
rank(D), ECF will be able to factorize D with minimal error.
Figure 4 shows visual results for the ECF method applied on
the Traffic and ARFace datasets. Note how, for the Traffic (36
classes) and ARFaces (50 classes) datasets the required code
length for ECF to full rank factorization is l = 6 and l = 8,
respectively as shown in Figures 4(e)(f).
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D D

(a) (b)
XX⊤ XX>

(c) (d)
X X

(e) (f)
Fig. 4. D matrix for the Traffic (a) and ARFace (b) datasets.
XX> term obtained via ECF for Traffic (c) and ARFace (d)
datasets. ECOC coding matrix X obtained with ECF for Traffic
(e) and ARFace (f).

4.3 Order of Coordinate Updates

Coordinate Descent has been applied in a wide span of prob-
lems obtaining satisfying results. However, the problem of
choosing the coordinate to minimize at each iteration still
remains active [47], [21], [53], [33]. In particular, [44] derives a
convergence rate which is faster when coordinates are chosen
uniformly at random rather than on a cyclic fashion. Hence,
choosing coordinates at random its a suitable choice when the
problem shows some of the following characteristics [47]:

• Not all data is available at all times.
• A randomized strategy is able to avoid worst-case order

of coordinates, and hence might be preferable.
• Recent efforts suggest that randomization can improve the

convergence rate [44].

However, the structure of ECF is different and calls for
a different analysis. In particular, we remark the following
points. (i) At each coordinate update of ECF, information about
the rest of coordinates is available. (ii) Since our coordinate
updates are solved uniquely, a repetition on a coordinate
update does not change the objective function. (iii) The descent
on the objective value when updating a coordinate is maximal
when all other coordinates have been updated. These reasons
leads us to choose a cyclic update scheme for ECF. In addition
in Figure 5 we show a couple of examples in which the cyclic

order of coordinates converges faster than the random order for
two problems: Vowel and ARFace (refer to Section 5 for further
information on the datasets). This behavior is common for all
datasets. In particular, note how the cyclic order of coordinates
reduces the standard deviation on the objective function, which
is denoted by the narrower blue shaded area in Figure 5.

(a) (b)
Fig. 5. Mean Frobenius norm value with standard deviation as
a function of the number of coordinate updates on 50 different
trials. The blue shaded area corresponds to cyclic update while
the red area denotes random coordinate updates for Vowel (a)
and ARFAce (b) datasets.

4.4 Approximation Errors and Convergence results when
D is an inner product of binary data

The optimization problem posed by ECF in Equation (1) is non-
convex due to the quadratic term XX>, even if the discrete
constraint is relaxed. This implies that we cannot guarantee
that the algorithm converges to the global optima. Recall that
ECF seeks for the term XX> that is closest to D under the
Frobenius norm. Hence, the error in the approximation can be
measured by ‖X∗X∗>−D‖2F ≥ 0, where X∗ is the local optimal
point to which ECF converges. In this sense, we introduce DB

which is the matrix of inner products of discrete vectors that
is closest to D under the Frobenious norm. Thus, we expand
the norm as in the following equation:

‖X∗X∗> −D‖2F = ‖X∗X∗> −DB + DB −D‖2F = (17)

= ‖X∗X∗> −DB‖2F + ‖D−DB‖2F − (18)

−2 tr((X∗X∗> −DB)(D−DB)). (19)

• The optimization error εo: measured as the distance be-
tween the local optimum where ECF converges and DB

denoted by εo = ‖X∗X∗> −DB‖2F , which is expressed as
the first term in Equation (18).

• The discretization error εd: computed as, εd = ‖D−DB‖2F ,
that is, the distance between D and the closest inner
product of discrete vectors DB , expressed as the second
term in Equation (18).

In order to better understand how ECF works we analyze
both components separately. Then, to analyze if ECF converges
to a good solution in terms of Frobenius norm we set εd = 0 by
generating a matrix D = DB which is the inner product matrix
of random discrete vectors, and thus, all the terms except of
‖X∗X∗> −DB‖2F are zero. By doing that, we can empirically
observe the magnitude of the optimization error εo. In order
to do that we run ECF 30 times on 100 different DB matrices
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(c) (d)
Fig. 6. (Mean objective value and standard deviation for 30 runs
of ECF on a random DG of 10 classes (a), 100 classes (b), and
500 classes (c). (d) Toy problem synthetic data, where each color
corresponds to a different category in the multi-class problem.

of different sizes and calculate the average ε̄o. Figure 6 shows
examples for different DG matrices of size 10× 10, 100× 100,
and 500 × 500. In Figure 6 we can see how ECF converges to
a solution with almost negligible optimization error after 15
iterations. In fact, the average objective value for all 3000 runs
of ECF on different DB ’s after 15 update cycles (coordinate
updates for all xi’s) is ε̄o < 10−10. This implies, that ECF
converges in average to a point with almost negligible objective
value, and when applied to D’s which are not computed from
binary components the main source of the approximation error
is the discretization error εd. Since ECF seeks to find a discrete
decomposition of D this discretization error is unavoidable,
and as we have seen empirically, ECF converges in average to
a solution with almost negligible objective value.

5 EXPERIMENTS

In this section we present the experimental results of the
proposed Error-Correcting Factorization method. In order to
do so, we first present the data, methods and settings.

5.1 Data

The proposed Error-Correcting Factorization method was ap-
plied to a total of 8 datasets. In order to provide a deep analysis
and understanding of the method, we synthetically generated
a Toy problem consisting of k = 14 classes, where each class
contained 100 two dimensional points sampled from a Gaus-
sian distribution with same standard deviation but different
means. Figure 6(d) shows the synthetic multi-class generated
data, where each color corresponds to a different category.
We selected 5 well-known UCI datasets: Glass, Segmentation,
Ecoli, Yeast and Vowel that range in complexity and number
of classes. Finally, we apply the classification methodology
in two challenging computer vision categorization problems.
First, we test the methods in a real traffic sign categorization
problem consisting of 36 traffic sign classes. Second, 50 classes

TABLE 1
Dataset characteristics.

Glass Segment. Ecoli Yeast Vowel Toy Traffic ARFace
#s 214 2310 336 1484 990 400 3481 1300
#f 9 19 8 8 10 2 100 120
#c 7 7 8 10 11 14 36 50

(a) (b)
Fig. 7. Visual examples for the ARFace and Traffic datasets.

from the ARFaces [41] dataset are classified using the present
methodology. These datasets are public upon request to the
authors. Table 1 shows the characteristics of the different
datasets.
•Traffic sign categorization: We test ECF on a real traffic

sign categorization problem, of 36 classes [10]. The dataset
contains a total of 3481 samples of size 32×32, filtered using the
Weickert anisotropic filter, masked to exclude the background
pixels, and equalized to prevent the effects of illumination
changes. These feature vectors are then projected into a 100
feature vector by means of PCA. A visual sample is show in
Figure 7(a).
•ARFaces classification: The ARFace database [41] is com-

posed of 26 face images from 126 different subjects (from
which 50 are selected), portraying different expressions and
complements. An example is shown in Figure 7(b).

5.2 Methods and settings
We compared the proposed Error-Correcting Factorization
method, with the standard predefined One vs. All (OVA) and
One vs. One (OVO) approaches [48], [52]. In addition, we
introduce two random designs for ECOC matrices. In the first
one, we generated random ECOC coding matrices fixing the
general correction capability to a certain value (RAND). In
the second, we generate a Dense Random coding matrix [3]
(DENSE). These comparisons enable us to analyze the effect
of reorganizing the inter-class correcting capabilities of an
ECOC matrix. Finally, in order to compare our proposal with
state-of-the-art methods, we also used the Spectral ECOC (S-
ECOC) method [57] and the Relaxed Hierarchy [23] (R-H) .
Finally we propose two different flavors of ECF, ECF-H and
ECF-E. In ECF-H we compute the design matrix D in order
to allocate the correction capabilities on those classes that
are hard to discriminate. On the other hand, for ECF-E we
compute D allocating correction to those classes that are easy
to discriminate. D is computed as the Mahalanobis distance
between each pair of classes. Although, there exist a number of
approaches to define D from data [23], [58], [57], i.e. the margin
between each pair of classes (after training a One vs. One SVM
classifier), we experimentally observed that the Mahalanobis
distance provides good generalization and leverages the com-
putational cost of training a One vs. One SVM classifier. All the
reported classification accuracies are the mean of a stratified
5−fold cross-validation on the aforementioned datasets. For
all methods we used an SVM classifier with RBF kernel. The
parameters C and γ were tunned by cross-validation on a
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validation subset of the data using an inner 2−fold cross-
validation. The parameter C was tunned on a grid-search on
a log sampling in the range [0, 1010], and the γ parameter
was equivalently tuned on a equidistant linear sampling in
the range [0, 1], we used the libsvm implementation available
at [12]. For both ECF-H and ECF-E we run the factorization
forcing different minimum distance between classes by setting
P ∈ 1 · {1, 3, 5, 7, 10} . For the Relaxed Hierarchy method [23]
we used values for ρ ∈ {0.1, 0.4, 0.7, 0.9}. In all the compared
methods that use a decoding function (e.g all tested methods
but the one in [23]) we used both the Hamming Decoding (HD)
and the Loss-Weighted decoding (LWD) [46].

5.3 Experimental Results

In Figure 8 we show the multi-class classification accuracy
as a function of the relative computational complexity for
all datasets using both Hamming decoding (HD) and Loss-
Weighted Decoding (LWD). We used non-linear SVM clas-
sifiers and we define the relative computational complexity
as the number of unique Support Vectors (SVs) yielded for
each method, as in [23]. For visualization purposes we use
an exponential scale and normalize the number of SVs by
the maximum number of SVs obtained by a method in that
particular dataset. In addition, although the code length cannot
be considered as an accurate measure of complexity when
using non-linear classifiers in the feature space, it is the only
measure of complexity that is available prior to learning the
binary problems and designing the coding matrix. In this
sense, we show in Figure 9 the classification results for all
datasets as a function of the code length l, using both Hamming
decoding (HD) and Loss-Weighted Decoding (LWD). Figures 8
and 9 and show how the proposed ECF-H obtains in most of
the cases better performance than state-of-the-art approaches
even with reduced computational complexity. In addition, in
most datasets the ECF-H is able to boost the boundaries of
those classes prone to error, the effect of this is that it attains
higher classification accuracies than the rest of methods paying
the prize of an small increase on the relative computational
complexity. Specifically, we can see how on Glass dataset,
Vowel, Yeast, Segmentation and Traffic datasets (Figs. 8(e)-(f)
and 9(e)-(f), respectively), the proposed method outperforms
the rest of the approaches while yielding a comparable or
even lower computational complexity, independently of the
decoding function used. We also can see that the RAND and
ECF-E methods present erratic behaviours. This is expected for
the random coding design, since incrementing the number of
SVs or dichotomies does not imply an increase in performance
if the dichotomies are not carefully selected. On the other
hand, the reason why ECF-E is not stable is not completely
straightforward. ECF-E focus its design in dichotomies that are
very easy to learn, allocating correction to those classes that
are separable. We hypothesize that when these dichotomies
become harder (there exists a limited number of easy separable
partitions) to learn the addition of a difficult dichotomy harms
the performance by adding confusion to previously learned
dichotomies until proper error-correction is allocated. On the
other hand, we can see how ECF-H usually shows a more
stable behaviour since it focuses on categories that are prone
to be confused. In this sense, we expect that the addition of
dichotomies will increase the correction. Finally, it is worth
noting that the Spectral ECOC method yields a code length
of l = k − 1, corresponding to the full eigendecomposition.

TABLE 2
Percentage of wins over all datasets for each method using as

a complexity measure the number SVs and the number of
classifiers. Last row shows the average complexity of each
method over all datasets. Abbreviations: ECF-H (H), ECF-E
(E), OVA (A), OVO (O), DENSE (D), RAND (R), S-ECOC(S).

Method R-H∗ S H E D R A O
Win % SVs 0.0 22.5 62.1 10.3 50.0 5.7 14.2 25.0

Win % nclass. 0.0 48.5 70.0 17.5 25.0 6.9 12.5 16.6
Avg. Comp. 0.58 0.87 0.88 0.89 0.91 0.92 0.99 0.99

Our proposal defines coding matrices which ensure to follow
the design denoted by D, fulfilling ECOC properties.

As a summary, we show in Figure 10 a comparison in
terms of classification accuracy for different methods over all
datasets. We compare the classification accuracy of a selected
method for both decodings (at different operating complexities
if available) versus the best performing method in a range of
±5% of the operative complexity. For consistency we show the
comparison using both the number of SVs and the number of
dichotomies as the computational complexity. If the compared
method dominates in most of the datasets it will be found
above the diagonal. In Figures 10(a) and 10(d) we compare
ECF-H with the best performant of the rest of the methods and
see that ECF-H outperforms the rest of the methods 62%−70%
of the times depending on the complexity measure. This im-
plies that ECF-H dominates most of the methods in terms of
performance by focusing on those classes that are more prone
to error regardless of the complexity measure used (number of
SVs or number of dichotomies). In addition, when repeating
the comparison for ECF-E in Figures 10(b) and 10(e) we see
that the majority of the datasets are clearly below the diagonal
(ECF-E is the most suitable choice 10%−17% of times). Finally,
Figures 10(c) and 10(f) show the comparison for OVA, which
is a standard method often defended by its simplicity [48]. We
clearly see how it never outperforms any method and it is
not the recommended choice for almost any dataset. In Table 2
we show the percentage of wins for all methods6, in increasing
order of complexity averaged over all datasets. Note how, ECF-
H denoted by H in the table although being the third less
complex method outperforms by far the rest of the methods
with an improvement of at least 12% − 20% in the worst
case. In conclusion, the experimental results show that ECF-H
yields ECOC coding matrices which obtain comparable or even
better results than state-of-the-art methods with similar relative
complexity. Furthermore, by a allowing a small increase in
the computational complexity when compared to state-of-the-
art methods, ECF is able to obtain better classification results
by boosting the boundaries of classes that are prone to be
confused.

6 CONCLUSIONS

We presented the Error-Correcting Factorization method for
multi-class learning which is based on the Error-Correcting
Output Codes framework. The proposed method factorizes a
design matrix of desired correction properties into a discrete
Error-Correcting component consistent with the design matrix.
ECF is a general method for building an ECOC multi-class
classifier with desired properties, which can be either directly

6. The R-H method [23] is far less complex than the compared
methods, however we compare it to the to the closest operating
complexity for each of the rest of the methods.
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Fig. 8. Multi-class classification accuracy (y axis) as a function of the relative computational complexity (x axis) for all datasets and
both decoding measures.
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Fig. 9. Multi-class classification accuracy (y axis) as a function of the number of dichotomies for all datasets and both decoding
measures (x axis).
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Fig. 10. (a) Summary of performance of ECF-H method over all datasets using the number of SVs and the number of dichotomies
as the measure of complexity, respectively for ECF-H (a)(d), ECF-E (b)(e) and OVA (c)(f).

set by the user or obtained from data using a priori inter-class
distances. We note that the proposed approach is not a replace-
ment for ECOC codings, but a generalized framework to build
ECOC matrices that follow a certain error-correcting criterion
design. The Error-Correcting Factorization is formulated as a
minimization problem which is optimized using a constrained
Coordinate Descent, where the minimizer of each coordinate
is the solution to a least-squares problem with box and linear
constraints that can be efficiently solved. By analyzing the
approximation error, we empirically show that although ECF
is a non-convex optimization problem, the optimization is
very efficient. We performed experiments using ECF to build
ECOC matrices following the common trend in state-of-the-
art works, in which the design matrix priorized the most
separable classes. In addition, we hypothesized and showed
that a more beneficial situation is to allocate the correction
capability of the ECOC to those categories which are more
prone to confusion. Experiments show that when ECF is used
to allocate the correction capabilities to those classes which are
prone to confusion we obtain higher accuracies than state of
the art methods with efficient models in terms of the number
of Support Vectors and dichotomies.

Finally, there still exists open questions that require a deeper
analysis for future work. The results obtained raise a fair doubt
regarding the right allocation of error correcting power in
several methods found in literature where ECOC designs are
based on the premise of boosting the classes which are easily

separable. In the light of these results, we may conjecture that
a careful allocation of error correction must be made in such a
way that balances two aspects: on one hand, simple to classify
boundaries must be handled properly. On the other hand, the
error correction must be allocated on difficult classes for the
ensemble to correct possible mistakes. In addition, it would be
interesting to study which are the parameters that affect the
suitability of the no class is left behind and the hard classes are
left behind one. Finally we could consider ternary matrices and
further regularizations.
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