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Abstract

World Health Organization estimates that 80% of the world population is af-
fected by back-related disorders during his life. Current practices to analyze
musculo-skeletal disorders (MSDs) are expensive, subjective, and invasive.
In this work, we propose a novel tool for static body posture analysis and
dynamic range of movement estimation of the skeleton joints based on 3D
anthropometric information computed from multi-modal data. These data
combine RGB information from a video camera and depth from an infrared
sensor. Given set of keypoints defined by the user, RGB and depth data are
aligned, depth surface is reconstructed, keypoints are matched using a novel
point-to-point fitting procedure, and accurate measurements about posture
and spinal curvature are computed. Given a set of joints, range of movement
measurements is also obtained. Moreover, gesture recognition based on joint
movements is performed to look for the correctness in the development of
physical exercises. The system shows high precision and reliable measure-
ments, being useful for posture reeducation purposes to prevent MSDs, such
as back pain, as well as tracking the posture evolution of patients in physical
rehabilitation treatments.
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1. Introduction

World Health Organization has categorized disorders of the musculo-
skeletal system as the main cause for absence from occupational work and one
of the most important causes of disability in elders in the form of rheumatoid
arthritis or osteoporosis. It is estimated that 80% of the world population will
suffer from musculo-skeletal disorders or dysfunctions (MSDs) during his life.
As a result, MSDs lead to considerable costs for public health systems [1].

The body posture evaluation of a subject manifests, in different degrees,
his level of physic-anatomical health given the behavior of bone structures,
and especially of the dorsal spine. For instance, common MSDs such as
scoliosis, kyphosis, lordosis, arthropathy, or spinal pain show some of their
symptoms through body posture. This requires the use of reliable, noninva-
sive, automatic, and easy to use tools for supporting diagnostic. However,
given the articulated nature of the human body, the development of this kind
of systems is still an open issue.

Given the difficulty of finding a tool for measuring the posture of the
human body at different configurations, digital biometry has become a very
useful tool. Digital biometry is defined by the American Society of Anthropo-
metric data as ”the technology to obtain reliable information of the physical
objects or the environment through the recording of images, its measure-
ment or interpretation”. The systems based on this technology are capable
to estimate morphological or functional alterations, being a useful resource
for health professionals.

The diagnostic evaluation of the anomalies follows through a careful study
of musculo-skeletal structure and receptorial aspects. These diagnostic tools
are based on monitoring anthropometric relationships with validated accu-
racy [21, 38, 34, 23, 22, 27, 28, 29]. These kind of tools are minimally invasive
and obtain good accuracy results in terms of precision but require an spe-
cific scene configuration, being necessary a camera calibration preprocessing
due to use of two-dimensional cameras in different planes. Another common
handicap of these systems, is their reduced portability to perform a custom
analysis for the therapist. These systems have been built highly parameter-
ized for a specific type of analysis. Most of these systems only treat specific
areas of the body, primarily the spinal deformities [23, 24, 32, 30, 31]. The
solution more frequently applied to measure body posture consists of the in-
stallation and alignment of multiple cameras, applying stereo vision method-
ologies [3, 4]. This kind of system uses to be expensive and require specific
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and restricted illumination conditions. The main alternative is accelerome-
ters [5], but these systems also use to be expensive and invasive. Further-
more, the location of accelerometers on the body of a subject is difficult and
cannot obtain accurate results because of the spatial measurements of multi-
axial articulations. There is another type of diagnostic tools that perform a
quantitative clinical analysis based on diagnostic predictions through anal-
ysis of anthropometric relations [25, 26]. These systems are able to predict
diseases in premature state. Using these tools is highly restricted to a sector
of the population, and its success rate is not accurate enough to be used in
clinical diagnostics.

Other common solutions are augmented reality systems using computer
vision techniques [6]. However, detecting humans in images or videos is a
challenging problem because of the high variation of possible configurations of
the scenario, such as changes in the point of view, illumination conditions, or
background complexity, just to mention a few. In order to treat human pose
in uncontrolled scenarios, there is a recent work using range images for object
recognition or modeling [7]. This new approach introduced a solution to the
problem of intensity and view changes in still images through the representa-
tion of 3D structures. The progress and spread of these new methods came
slowly since data acquisition devices were expensive and bulky, with cum-
bersome communication interfaces when conducting experiments. However,
Microsoft R⃝ has recently launched Kinect

TM
[8], a cheap multisensory device,

based on structured light technology, capable of capturing visual depth in-
formation (RGB-Depth technology) to, then, generate real-time depth maps
containing discrete range measurements of the physical scene. The device is
so compact and portable that it can be easily installed in any environment to
analyze scenarios where humans are present. While inexpensive devices such
as the Nintendo Wii Balance Board TM, a clinically feasible alternative to a
force platform [35], it cannot accurately differentiate joint movements. Many
researchers have obtained their first results in the field of human motion cap-
ture using this technology. In particular, Shotton et al. [9] presented one of
the greatest advances in the extraction of the human body pose from depth
maps, which also forms the core of the Kinect

TM
human recognition frame-

work. Additionally, there have been published several studies supporting its
accuracy and portability for clinical applications [36, 37, 33].

In this work, we present a novel system that uses RGB-Depth information
to elaborate a semi-automatic postural and spinal analysis, and to automat-
ically estimate the range of movement of the different limbs. Regarding the
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postural and spinal analysis, compared to standard alternatives and sup-
ported by clinical specialists, the system shows high precision and reliable
measurements to be included in the clinical routine. The range of movement
estimation and gesture recognition are also reliable for physical rehabilitation
purposes.

The rest of the paper is organized as follows: Section 2 introduces the
materials and methods, Section 3 presents the system for posture estimation
and range of movement analysis, Section 4 presents the results to validate
our proposal, and finally, Section 5 concludes the paper.

2. Material and methods

In this section, we provide the details about the sensors, data, and main
methods involved in the development of our system.

2.1. Sensors

The data acquisition is done using the Microsoft Kinect
TM

device. The
device bases on a technology that combines a color camera sensor with a
depth sensor. The depth sensor consists of an infrared laser projector com-
bined with a monochrome CMOS sensor, which captures three-dimensional
video data under any ambient light conditions, but it has a practical range
limit of [1.2m - 3.5m] distance. The color video stream uses 8-bit VGA res-
olution (640×480) with a Bayer color filter, while the monochrome depth
sensing video stream is in QVGA resolution (320×240 pixels) with 11-bit
depth, which provides 2,048 levels of sensitivity. The device outputs video,
to then be processed, at a frame rate of 30Hz.

A specific validation method to evaluate our system using infrared LEDs
has been designed to assess the capabilities of Kinect

TM
as a measurement

tool. Each infrared LED comprises a rechargeable button cell IR2032, a mi-
croswitch and a cold white color LED, 6000-8000mcd, 3V-20mW (Figure 1).

2.2. Data and groundtruth definition

In order to measure the precision of the proposed methodology in the
different modules of the system, we created a novel data set consisting of two
different parts.

A single multi-modal frame, comprising a still image and a depth map,
is needed to perform an analysis in both static posture and spine curvature
analysis. Thus, a battery of 500 single multi-modal frames has been labeled
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(a) (b)

Figure 1: (a) Led sensor and infrared filter. (b) Validation of distances and angles.

by three different observers (Figure 2), with an inter observer correlation su-
perior to 99% for all planes (X, Y, Z). Each frame contains a set of angles and
distances in order to simulate an analysis protocol for the study of posture,
placing twelve infrared led markers on subject’s skin. A total of 20 subjects
participated in the validation of the method. With the aim to perform an
automatic validation of the tests, infrared markers are detected by means of
thresholding a HSV infrared-filtered image (filtered at 850 nanometers).

Figure 2: Measuring spatial relations between infrared markers in order to manually
label the single multi-modal frames.

Sequences of multi-modal frames containing exercises for physical reha-
bilitation have been defined to validate range of motion analysis and gesture
recognition. For this purpose, a set of 25 sequences of one minute each one
has been recorded, in which 5 different subjects appear performing repeatedly
and correctly 5 exercises. This part of the data set contains approximately
a total of 37300 semi-supervised labeled frames.

2.3. Methods

The postural analysis is done through the examination of 3D anthropo-
metric values. Given a set of markers/keypoints defined by the user, our
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proposed method performs the following steps: a) RGB and depth data
are aligned, b) noise is removed and depth surface is reconstructed, c) user
keypoints and predefined protocols are matched using a novel point-to-point
fitting procedure, d) static measurements about posture and spinal curvature
are accurately computed. The static measurements about posture consist of
spatial relations between those keypoints: pairwise distances, distances rela-
tive to a vertical or horizontal axis, and angles among triplets of keypoints or
angles between pairs relative to an axis. Regarding the spinal measurements,
it is interpolated a curve representing the spine and also clinical spatial re-
lations (distances and angles) among vertebrae are computed.

On the other hand, a skeletal model is obtained from a real-time hu-
man pose recognition from single depth images [9]. This model provides
spatio-temporal information about the joints of the subject, and so then a
dynamic range of movement of his limbs can be robustly estimated. The
joints of interest to estimate the range of movement are manually selected by
the user or automatically determined by the system depending on the ges-
ture being performed. Dynamic Time Warping is applied over the detected
threedimensional position of the joints in order to perform automatic gesture
recognition.

3. Calculation

We designed a full functional system devoted to help in the posture reed-
ucation task with the aim of preventing and correcting musculo-skeletal dis-
orders, as well as tracking the posture evolution of patients in physical reha-
bilitation treatments. The system is composed by three main functionalities:
a) static posture analysis (SPA), b) spine curvature analysis (SCA), and c)
range of movement analysis, including automatic gesture recognition (RMA).
The architecture of the system is shown in Figure 3. First, a pre-processing
step to remove noise and reconstruct surfaces is performed. Next, we describe
each of these stages.

3.1. Noise removal and surface reconstruction

After aligning RGB and depth data [12, 15], and even though the used
depth information is compelling, it is still inherently noisy. Depth mea-
surements often fluctuate and depth maps contain numerous holes where no
readings are obtained. In order to obtain a valid and accurate depth map,
we perform a depth preprocessing step to eliminate erroneous information
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Figure 3: Posture analysis system.

caused by noise and to reconstruct surfaces not well defined. In this sense,
posterior estimation of 3D coordinates of markers are successfully computed,
and accurate measurements of distances and angles for pose and range of
movement are estimated. We perform the following tasks:

Noise removal : For each point, we compute the mean distance from it to
all its neighbors. By assuming that the resulted distribution is Gaussian with
a mean and a standard deviation, all points whose mean distances are outside
an interval defined by the global distances mean and standard deviation are
considered as outliers.

Surface reconstruction: The surface reconstruction process rests on an
inpainting image processing adaptation for 3D point cloud, based on com-
pactly supported radial basis functions [20]. Radial basis function (RBF)
interpolation is an important method for surface reconstruction [19] from 3D
scatter points. The 3D point cloud extracted from the scene is encoded as a
depth map. Then, the algorithm converts 2D image inpainting problem into
implicit surface reconstruction problem from 3D points set. By performing
this reconstruction small holes are reconstructed with high precision. Using
compactly supported radial basis functions decreases the computational com-
plexity in comparison to other common re-sampling approaches [14], which
attempt to recreate the missing parts of the surface with higher order poly-
nomial interpolation among the surrounding data points. Figure 4 shows an
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example of this process 1.

(a) (b)

(c) (d) (e) (f)

Figure 4: (a) Original depth map. (b) Inpaint filtered and re-sampled. (c)-(d) and
(e)-(f) additional non-filtered and filtered surface examples for two depth body
acquisition examples, respectively.

Once the data is aligned and depth maps are filtered, the user can access
to the main functionalities of the system described below.

3.2. Static posture analysis (SPA)

This module computes and associates a set of three-dimensional angles
and distances to keypoints defined by the user. These keypoints correspond
to the dermal markers placed on the patient’s skin. These dermal markers

1We experimentally found that our approach for noise removal and background re-
construction obtained better results than standard approaches based on accumulating
temporal images (e.g. 30 frames of a stationary subject) for noise reduction and hole
filling.
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have to be physically placed by a therapist and, then, manually selected
interacting with the RGB data displayed in the screen (which internally is
aligned with the corresponding depth data, providing real 3D information)
by the application to define the set of virtual markers (or keypoints). The
keypoints could not be directly placed in the virtual scenario, because they
have to correspond to specific body bone structures that need to be located
by palpation.

The module also allows the therapist the possibility of designing a proto-
col of analysis. That is, a predefined set of angular-distance measurements
among a set of body keypoints, all of them defined and saved by the user for
a posterior automatic matching. The application of these protocols makes
possible static posture analysis performed quickly, being highly customized,
and done in an automatic way. Thus, when keypoints have been defined, the
user can choose the most appropriate protocol and the system will finally
provide the measurements automatically. Figure 5 shows an example of a
predefined protocol (the set of manual annotated keypoints together with
the list of distance and angle relations to be computed) and two examples of
3D views and relations for a set of body landmarks.

In order to obtain an intelligent and automatic estimation of posture
measurements, we define a correspondence procedure among manually placed
virtual markers and protocol markers. We formulate markers matching as an
optimization problem. Suppose a protocol analysis (template) T composed
by Lmarkers, T = {T1, T2, ..., TL}, Ti = (xi, yi, zi), and the current analysis C
composed by the same number of markers, C = {C1, C2, ..., CL} (predefined
template and current set of keypoints defined by the user, respectively). Our
goal is to make a one-to-one correspondence so that we minimize the sum of
least square distances among assignments as follows:

argminC′

L∑
i=1

∥C ′
i − Ti∥2 , (1)

where C ′ is evaluated as each of the possible permutations of the elements
of C. For this task, first, we perform a soft pre-alignment between C and T
using Iterative Closest Point (ICP) [13], and then, we propose a sub-optimal
approximation to the least squares minimization problem. ICP is based on
the application of rigid transformations (translation and rotation) in order
to align both sequences C and T . This attempts to minimize the error of
alignment E(.) between the two marker sequences as follows:
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(a)

(b) (c)

Figure 5: Static posture analysis example: (a) Interaction from interface, (b) 3D
visual view of selected landmarks and relations, and (c) additional view including
reference plane.

E(R, T ) =
L∑
i=1

L∑
j=1

wi,j∥Ti −R(Cj)− T ∥2, (2)
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being R and T the rotation matrix and translation vector, respectively. wi,j

is assigned 1 if the i-th point of T described the same point in space as the j-th
point of C. Otherwise wi,j = 0. Two things have to be calculated: first, the
corresponding points, and second, the transformation (R, T ) that minimizes
E(R, T ) on the base of the corresponding points. For this task, we apply
Singular Value Decomposition (SVD). At the end of the optimization, the
new projection of the elements of C is considered for the final correspondence.
Then, Eq. 1 is approximated as follows: Given the symmetric matrix of
distances M of size L × L which codifies the set of L · (L − 1)/2 possible
distances among all assignments between the elements of C and T , we set a
distance threshold θM to define the adjacency matrix A:

A(i, j) =

{
1 if M(i, j) < θM

0, otherwise.
(3)

Then, instead of looking for the set of L! possible assignments of elements
of C and T that minimizes Eq. 1, only the possible assignments (Ci, Tj) that
satisfies A(i, j) = 1 are considered, dramatically reducing the complexity of
the correspondence procedure2.

3.3. Spine curvature analysis (SCA)

The objective of this task is to evaluate sagittal spine curvatures (curves of
the spine projected on the sagittal plane) by noninvasive graphic estimations
in kyphotic and lordotic patients. Kyphosis and lordosis are, respectively,
conditions of over-curvature of the thoracic spine (upper back) and the lum-
bar spine (lower back). The methodology proposed by Leroux et al [10] offers
a three-dimensional analysis valid for clinical examinations of those condi-
tions. In order to perform this analysis we proceed as follows. First, the
therapist places the virtual markers on the spine (an example of spine in-
teraction and computation are shown in Figure 6(a)). Then, a few markers
are selected and the 3D curve that represents the spine is reconstructed by
linear interpolation (Figure 6(b)). Finally, the anthropometric kyphosis Ka

and lordosis La are obtained.
The geometric model to compute Ka is represented in the Figure 6(c). F

divides the curve representing the thoracic spine in two asymmetric arcs with

2We experimentally found that high values of θM obtain robust results and reduces
then computational cost in comparison to other approaches, such as Shape Context [11].
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(a) (b) (c) (d)

Figure 6: (a) Sample of analysis. (b) Automatically reconstructed 3D spinal cloud.
(c) Geometric model to obtain anthropometric kyphosis and lordosis value. (d)
Additional 3D view of the reconstructed spine through the system interface.

different radius. Note that the F component begins at the farthest marker
(apex, corresponding to T5) and it ends at the intersection with the T2-to-
T12 line. h1 and h2 are the distances from T2 to the intersection and the
distance from the intersection to T12, respectively. Then, the summation of
two angles, φ1 and φ2, represents the kyphosis curve value, where:

φ1 = 180− 2 · arctan
(
h1

F

)
,

φ2 = 180− 2 · arctan
(
h2

F

)
.

(4)

La is calculated in a similar way, though the therapist should place the
markers in the lumbar spine region.

The capacity analysis of the spine is reinforced by a three-dimensional en-
vironment that can be managed by the therapist for a thorough examination
(Figure 6(d) and Figure 7).

3.4. Range of movement analysis (RMA)

In order to complement the posture analysis procedure, we compute the
range of movement of the different body articulations. This is a facility
aimed to assist in diagnoses and physical rehabilitation treatments. For this
purpose, we perform user detection using the Random Forests approach with
depth features of Shotton et al [9] and, then, compute the skeletal model.
This process is performed computing random offsets of depth features as
follows:
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Figure 7: Three-dimensional examination environment managed by the therapist.

fθ(D,x) = D(
x+ u

Dx

) −D(
x+ v

Dx

), (5)

where θ = (u,v), and u,v ∈ R2 is a pair of offsets, depth invariant. Thus,
each θ determines two new pixels relative to x, the depth difference of which
accounts for the value of fθ(D,x). Using this set of random depth features,
Random Forests is trained for a set of trees, where each tree consists of split
and leaf nodes (the root is also a split node). Finally, we obtain a final pixel
probability of body part membership li as follows:

P (li|D,x) =
1

τ

τ∑
j=1

Pj (li|D,x) , (6)

where P (li|D,x) is the Probability Density Function (PDF) stored at the
leaf, reached by the pixel for classification (D,x) and traced through the
tree j, j ∈ τ . Computing the intersection borders among mean shift clusters
estimated over the obtained limb labels of the Random Forests procedure,
we obtain a three-dimensional skeletal model composed by nineteen joints.
The physician then selects joint articulations and automatically obtains their
maximum opening and minimum closing values measured in degrees for a
certain period of time (Figure 8).

However, to provide a fully-automatic functional range of movement es-
timation, we had to consider those cases in which a therapist is not present
to operate with the system, for instance, when the patient is performing the
rehabilitation exercises at home. Obviously, it would be useless obtaining
range of movement measurements when an exercise is not well performed.
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Figure 8: Skeletal model and example of selected articulations with computed dy-
namic range of movement (maximum opening and minimum closing values of a
joint measured in degrees for a certain period of time).

This problem was solved by including an action/gesture recognition frame-
work to our software.

3.4.1. Gesture recognition

The system is capable to notice if a certain exercise is performed properly
or not. For this task, the system includes a set of rehabilitation exercises to
ask the patient to perform them. Then, temporal feature vectors computed
by the Random Forests approach described before are compared between
the patient and the original templates using dynamic programming based
on the 3D spatial coordinates of the nineteen joints. The similarity between
exercise patterns is computed using Dynamic Time Warping (DTW) [16].
The reference patterns are defined by the therapist and saved in the system
database.

The DTW algorithm was defined to match temporal distortions between
two models, finding an alignment warping path between two time series X =
{x1, ., xN}, N ∈ N and Y = {y1, ., yM},M ∈ N.

If sequences take values from the feature space Φ, to compare two se-
quences X,Y ∈ Φ, we need to use a local distance measure, defining a func-
tion:

d : Φ× Φ → R ≥ 0. (7)

The algorithm starts by building the local distance matrix D ∈ RN×M

representing all pairwise distances between X and Y:

D ∈ RN×M : di,j = ∥xi − yj∥ , i ∈ [1 : N ], j ∈ [1 : M ]. (8)
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Once the local distance matrix is built, the algorithm finds the warping
path. The warping path defines a correspondence of an element xi ∈ X to
yj ∈ Y following certain constraints. The warping path (or alignment path)
built by DTW is a sequence of points p = (p1, .., pK) with pl = (pi, pj) ∈ [1 :
N ]× [1 : M ] for l ∈ [1 : K] which satisfy the following criteria:

Boundary condition: p1 = (1, 1) and pK = (N,M).
Monotonicity condition: n1 ≤ .. ≤ nK and m1 ≤ .. ≤ mK , preserving the

time-ordering of points.
Step size condition: pl+1 − pl ∈ {(1, 1), (1, 0), (0, 1)}.
The distance function associated with a warping path computed with

respect to the distance matrix (which represents all pairwise distances) is:

dp(X,Y ) =

L∑
l=1

d(xnl
, yml

). (9)

The warping path that supposes the minimum cost of alignment is called
optimal warping path, P ∗. To find it, we need to test every possible warping
path between X and Y, which could be computationally challenging (the
number of optimal paths grow exponentially as the lengths of X and Y grow
linearly). For this reason, DTW employs a Dynamic Programming - based
algorithm that drastically reduces the complexity to O(MN). The Dynamic
Programming part of DTW algorithm uses the DTW distance function:

DTW (X,Y ) = dp∗(X,Y ) = min{dp(X,Y ), p ∈ PN×M}, (10)

where PN×M is the set of all possible warping paths, and builds the accumu-
lated cost matrix C which is defined as follows:

First row : C(1, j) =
j∑

k=1

d(x1, yk), j ∈ [1,M ].

First column: C(i, 1) =
i∑

k=1

d(xk, y1), i ∈ [1, N ].

All other elements : C(i, j) = d(xi, yj)+min{C(i−1, j−1), C(i−1, j), C(i, j−
1)}.

Finally, once accumulated cost matrix is built, the optimal warping path
is found applying backtracking from pK = (M,N) to p1 = (1, 1) (Figure 9).
And, the cost of the sequence matching, accumulated in pK , is used to mea-
sure the correct achievement of the proposed physical exercises.

Moreover, we applied a context-based enhancement to the original DTW,
a feature weighting [17], that basically consists of giving more relevance to
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Figure 9: Warping path between two sequences, X and Y. Each cell has associated
a cost and the path goes through the cells that minimize the cumulative cost.

the joints that help to improve the inter-class discrimination among gestures.

4. Results

In order to present the results, we discuss the software details and vali-
dation procedures.

4.1. Software details

As a result of this work, we obtained a system that combines hardware -
the Kinect

TM
device - and software.

Regarding the software implementation, we used the Kinect
TM

SDK frame-
work. We also used the Point Cloud Library (PCL) to treat cloud points,
and to support a free and three-dimensional visualization we used the Visu-
alization Toolkit library (VTK). The user interface has been developed in the
multi-platform Digia Qt technology. The programming language used was
C++. The system runs fluently on a standard computer Intel Core i7-3770
CPU 3.90GHz with 8GB RAM.

In Figure 10, it is shown an example of interaction with the system
through its graphical user interface.
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(a) (b)

Figure 10: (a) Interaction with the system while performing an anatomic spine
analysis. (b) A patient is squatting in a physical rehabilitation treatment and
receiving feedback from the system.

4.2. System validation

The data described previously, in material and methods section, has been
defined and used for the validation of the system.

Results for different distance of the device to the scene are shown in Ta-
ble 1 and 2 for pose analysis and range of movement analysis, respectively.
AAV and ’◦’ correspond to the average absolute value and degree, respec-
tively. The relative mean errors are computed in % from the computed
estimations and the real estimations for the distances and degrees, respec-
tively. In the case of range analysis, the degrees are computed among the
tracked joints at the beginning and end of the labeled sequences, meanwhile
in the posture analysis the degrees are computed as the angle among la-
beled landmarks in the same image. These analysis validates the accuracy
of the SPA and RMA in millimeters and degrees, respectively. Note the high
precision in both tests. In addition, in order to validate the curvature anal-
ysis of the spine (SCA), we used a group of 10 patients and performed the
Leroux protocol [10], placing nine markers over the spine. The relationship
between lateral radiographic and anthropometric measures was assessed with
the mean difference. It has used Cobb technique on the lateral radiograph
in order to obtain the coefficients of kyphosis and lordosis. The results of
the SPA validation are shown in Table 3. Moreover, after discussing with
specialists in physiotherapy they agreed that the accuracy of the results is
more than sufficient for diagnostic purposes.

The gesture recognition framework included in the range of movement
analysis has been validated using the data set of 25 sequences previously
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Distance subject-device (m) 1,3 1,9 2,2
AAV (mm) 0,98 1,42 2,1
Relative mean error distance (%) 1,01 1,18 1,71
AAV (◦ angles) 0,51 1,04 1,24
Relative mean error angle (%) 0,46 0,77 1,3

Table 1: Pose estimation.

Distance subject-device (m) 1,3 1,9 2,2
AAV (◦ movement) 2,2 3,8 5,2
Relative mean error angle (%) 0,76 0,88 1,45

Table 2: Range of movement precision.

introduced. The sequences may have different sizes since they can be aligned
using DTW. Nevertheless, adjusting the sensitivity for intra and inter-class
gesture discrimination is not straightforward. This sensitivity is adjusted by
a gesture similarity threshold based on the gesture alignment cost. For this
purpose, we computed the value of the gesture alignment cost µ over a leave-
one-out cross-validation (LOOCV). We trained for different estimated values
of µ. As a validation measurement, we compute the confusion matrix for
each test sample of the LOOCV strategy. Being G the number of gestures,
all test confusion matrices are added in a performance matrix PG, and the
final accuracy A per gesture (exercise) is computed as follows,

A = 100 · Trace(PG)

NC +
G∑
i=1

G∑
j=1

PG(i, j)

(11)

where NC is the number of samples of the data set not classified as any
gesture because achieving an alignment cost over µ. Eventually, µ that gave
the better results for our data set was selected as the optimal one. The
obtained results applying the feature-weighted DTW (with the optimal µ) on
the defined data set, shown in Figure 12, encouraged us to finally complement

Khyposis range Lordosis range
AAV (◦) 5 6

Table 3: Validation of spinal analysis.
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the RMA module with gesture recognition.

Figure 11: Classification performance A over the exercises data set for the five
exercise categories using feature-weighted DTW.

Finally, in Figure 12 we show the computational complexity in terms of
execution time of the different techniques and procedures involved in our sys-
tem. One can see the fast computation of the different modules that though
in some cases does not achieve real time it is suitable for real application
purposes. As commented above, the times were computed in a conventional
computer Intel Core i7-3770 CPU 3.90GHz with 8GB RAM.

4.3. Applications

The main scenarios of application of our system are posture analysis,
physical rehabilitation, and fitness conditioning. In Figure 13, some real
examples in which we tested our system are shown.

5. Conclusions

We designed a comprehensive posture analysis tool. This tool is a break-
through in the field of rehabilitation research. The system allows for semi-
automatic static posture and spine curvature analysis, as well as for auto-
matic range of movement estimation and gesture recognition, from 3D an-
thropometric data acquired by a low cost RGB-Depth camera. The aim of
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Figure 12: Computational time of the different steps and techniques of our system
in milliseconds.

the system is to assist in the prevention and treatment of musculo-skeletal
dysfunctions. We integrated several frontier computer vision and artificial
intelligence techniques including three-dimensional visual data processing,
statistical learning, and time series analysis. Furthermore, the system is
meant to be highly adaptable and customizable to the needs of the thera-
pist. The validation study shows high precision and reliable measurements
in terms of distance, degree, range of movement estimation, and gesture
recognition. Supported by clinical specialists, it is suitable to be included in
the clinical routine, including posture reeducation, rehabilitation, and fitness
conditioning scenarios.

Glossary

Finally, we provide a list of field-specific terms used in the article:

• Structured light : The process of calculating the depth and surface in-
formation from the deformation seen in a known projected pattern of
pixels (often grids or horizontal bars) to the scene.

• Musculo-skeletal disorders: Disorders that can affect the body’s mus-
cles, joints, tendons, ligaments, and nerves. Health problems range
from discomfort, minor aches and pains, to more serious medical con-
ditions.
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(a)

(b)

(c)

Figure 13: The system has been successfully applied in different real case scenarios:
(a) posture reeducation, (b) physical rehabilitation, and (c) fitness conditioning.
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• RGB image: Image represented by the RGB color model, that is an
additive color model in which red, green, and blue light are added
together to reproduce a broad array of colors.

• Depth map: An image that contains information relating to the dis-
tance of the surfaces of scene objects from a viewpoint.

• HSV image: HSV from hue, saturation, and value. It is a common
cylindrical-coordinate representations of points in an RGB color model.
It rearranges the geometry of RGB in an attempt to be more intuitive
and perceptually relevant than the cartesian (cube) representation.

• Ground truth data: Information acquired by field study for the purpose
of validation of obtained results.

• Feature: In computer vision, denotes a piece of information which is
relevant for solving the computational task. It can refer to (a) the result
of a general neighborhood operation applied to an image, or (b) specific
structure in the image itself (points, edges, etc). Other examples of
features are related to motion in image sequences, to shapes, or to
properties of such a region.

• Feature vector : If two or more different features are extracted resulting
in two or more feature descriptors at each image point, then a common
practice is to organize the information provided by all these descriptors
as the elements of one single vector.

• Feature space: The set of all possible feature vectors.

• Statistical learning : A framework for machine learning drawing from
the fields of statistics and functional analysis. Statistical learning the-
ory deals with the problem of finding a predictive function based on
data.

• Time series analysis : Comprises methods for analyzing time series data
in order to extract meaningful statistics and other characteristics of the
data.

• Trace: In linear algebra, the trace of an square matrix B is defined to
be the sum of the elements on the main diagonal (the diagonal from
the upper left to the lower right) of B.
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