|
Antonio Hernandez, Sergio Escalera, & Stan Sclaroff. (2016). Poselet-basedContextual Rescoring for Human Pose Estimation via Pictorial Structures. IJCV - International Journal of Computer Vision, 118(1), 49–64.
Abstract: In this paper we propose a contextual rescoring method for predicting the position of body parts in a human pose estimation framework. A set of poselets is incorporated in the model, and their detections are used to extract spatial and score-related features relative to other body part hypotheses. A method is proposed for the automatic discovery of a compact subset of poselets that covers the different poses in a set of validation images while maximizing precision. A rescoring mechanism is defined as a set-based boosting classifier that computes a new score for each body joint detection, given its relationship to detections of other body joints and mid-level parts in the image. This new score is incorporated in the pictorial structure model as an additional unary potential, following the recent work of Pishchulin et al. Experiments on two benchmarks show comparable results to Pishchulin et al. while reducing the size of the mid-level representation by an order of magnitude, reducing the execution time by 68 % accordingly.
Keywords: Contextual rescoring; Poselets; Human pose estimation
|
|
|
Cristina Palmero, Jordi Esquirol, Vanessa Bayo, Miquel Angel Cos, Pouya Ahmadmonfared, Joan Salabert, et al. (2017). Automatic Sleep System Recommendation by Multi-modal RBG-Depth-Pressure Anthropometric Analysis. IJCV - International Journal of Computer Vision, 122(2), 212–227.
Abstract: This paper presents a novel system for automatic sleep system recommendation using RGB, depth and pressure information. It consists of a validated clinical knowledge-based model that, along with a set of prescription variables extracted automatically, obtains a personalized bed design recommendation. The automatic process starts by performing multi-part human body RGB-D segmentation combining GrabCut, 3D Shape Context descriptor and Thin Plate Splines, to then extract a set of anthropometric landmark points by applying orthogonal plates to the segmented human body. The extracted variables are introduced to the computerized clinical model to calculate body circumferences, weight, morphotype and Body Mass Index categorization. Furthermore, pressure image analysis is performed to extract pressure values and at-risk points, which are also introduced to the model to eventually obtain the final prescription of mattress, topper, and pillow. We validate the complete system in a set of 200 subjects, showing accurate category classification and high correlation results with respect to manual measures.
Keywords: Sleep system recommendation; RGB-Depth data Pressure imaging; Anthropometric landmark extraction; Multi-part human body segmentation
|
|
|
Cristina Palmero, Albert Clapes, Chris Bahnsen, Andreas Møgelmose, Thomas B. Moeslund, & Sergio Escalera. (2016). Multi-modal RGB-Depth-Thermal Human Body Segmentation. IJCV - International Journal of Computer Vision, 118(2), 217–239.
Abstract: This work addresses the problem of human body segmentation from multi-modal visual cues as a first stage of automatic human behavior analysis. We propose a novel RGB–depth–thermal dataset along with a multi-modal segmentation baseline. The several modalities are registered using a calibration device and a registration algorithm. Our baseline extracts regions of interest using background subtraction, defines a partitioning of the foreground regions into cells, computes a set of image features on those cells using different state-of-the-art feature extractions, and models the distribution of the descriptors per cell using probabilistic models. A supervised learning algorithm then fuses the output likelihoods over cells in a stacked feature vector representation. The baseline, using Gaussian mixture models for the probabilistic modeling and Random Forest for the stacked learning, is superior to other state-of-the-art methods, obtaining an overlap above 75 % on the novel dataset when compared to the manually annotated ground-truth of human segmentations.
Keywords: Human body segmentation; RGB ; Depth Thermal
|
|
|
Xavier Perez Sala, Fernando De la Torre, Laura Igual, Sergio Escalera, & Cecilio Angulo. (2017). Subspace Procrustes Analysis. IJCV - International Journal of Computer Vision, 121(3), 327–343.
Abstract: Procrustes Analysis (PA) has been a popular technique to align and build 2-D statistical models of shapes. Given a set of 2-D shapes PA is applied to remove rigid transformations. Then, a non-rigid 2-D model is computed by modeling (e.g., PCA) the residual. Although PA has been widely used, it has several limitations for modeling 2-D shapes: occluded landmarks and missing data can result in local minima solutions, and there is no guarantee that the 2-D shapes provide a uniform sampling of the 3-D space of rotations for the object. To address previous issues, this paper proposes Subspace PA (SPA). Given several
instances of a 3-D object, SPA computes the mean and a 2-D subspace that can simultaneously model all rigid and non-rigid deformations of the 3-D object. We propose a discrete (DSPA) and continuous (CSPA) formulation for SPA, assuming that 3-D samples of an object are provided. DSPA extends the traditional PA, and produces unbiased 2-D models by uniformly sampling different views of the 3-D object. CSPA provides a continuous approach to uniformly sample the space of 3-D rotations, being more efficient in space and time. Experiments using SPA to learn 2-D models of bodies from motion capture data illustrate the benefits of our approach.
|
|
|
Sergio Escalera, Jordi Gonzalez, Hugo Jair Escalante, Xavier Baro, & Isabelle Guyon. (2018). Looking at People Special Issue. IJCV - International Journal of Computer Vision, 126(2-4), 141–143.
|
|