|
Marçal Rusiñol and Josep Llados. 2012. The Role of the Users in Handwritten Word Spotting Applications: Query Fusion and Relevance Feedback. 13th International Conference on Frontiers in Handwriting Recognition.55–60.
Abstract: In this paper we present the importance of including the user in the loop in a handwritten word spotting framework. Several off-the-shelf query fusion and relevance feedback strategies have been tested in the handwritten word spotting context. The increase in terms of precision when the user is included in the loop is assessed using two datasets of historical handwritten documents and a baseline word spotting approach based on a bag-of-visual-words model.
|
|
|
David Fernandez, Josep Llados, Alicia Fornes and R.Manmatha. 2012. On Influence of Line Segmentation in Efficient Word Segmentation in Old Manuscripts. 13th International Conference on Frontiers in Handwriting Recognition.763–768.
Abstract: he objective of this work is to show the importance of a good line segmentation to obtain better results in the segmentation of words of historical documents. We have used the approach developed by Manmatha and Rothfeder [1] to segment words in old handwritten documents. In their work the lines of the documents are extracted using projections. In this work, we have developed an approach to segment lines more efficiently. The new line segmentation algorithm tackles with skewed, touching and noisy lines, so it is significantly improves word segmentation. Experiments using Spanish documents from the Marriages Database of the Barcelona Cathedral show that this approach reduces the error rate by more than 20%
Keywords: document image processing;handwritten character recognition;history;image segmentation;Spanish document;historical document;line segmentation;old handwritten document;old manuscript;word segmentation;Bifurcation;Dynamic programming;Handwriting recognition;Image segmentation;Measurement;Noise;Skeleton;Segmentation;document analysis;document and text processing;handwriting analysis;heuristics;path-finding
|
|
|
Emanuel Indermühle, Volkmar Frinken and Horst Bunke. 2012. Mode Detection in Online Handwritten Documents using BLSTM Neural Networks. 13th International Conference on Frontiers in Handwriting Recognition.302–307.
Abstract: Mode detection in online handwritten documents refers to the process of distinguishing different types of contents, such as text, formulas, diagrams, or tables, one from another. In this paper a new approach to mode detection is proposed that uses bidirectional long-short term memory (BLSTM) neural networks. The BLSTM neural network is a novel type of recursive neural network that has been successfully applied in speech and handwriting recognition. In this paper we show that it has the potential to significantly outperform traditional methods for mode detection, which are usually based on stroke classification. As a further advantage over previous approaches, the proposed system is trainable and does not rely on user-defined heuristics. Moreover, it can be easily adapted to new or additional types of modes by just providing the system with new training data.
|
|
|
Jon Almazan, David Fernandez, Alicia Fornes, Josep Llados and Ernest Valveny. 2012. A Coarse-to-Fine Approach for Handwritten Word Spotting in Large Scale Historical Documents Collection. 13th International Conference on Frontiers in Handwriting Recognition.453–458.
Abstract: In this paper we propose an approach for word spotting in handwritten document images. We state the problem from a focused retrieval perspective, i.e. locating instances of a query word in a large scale dataset of digitized manuscripts. We combine two approaches, namely one based on word segmentation and another one segmentation-free. The first approach uses a hashing strategy to coarsely prune word images that are unlikely to be instances of the query word. This process is fast but has a low precision due to the errors introduced in the segmentation step. The regions containing candidate words are sent to the second process based on a state of the art technique from the visual object detection field. This discriminative model represents the appearance of the query word and computes a similarity score. In this way we propose a coarse-to-fine approach achieving a compromise between efficiency and accuracy. The validation of the model is shown using a collection of old handwritten manuscripts. We appreciate a substantial improvement in terms of precision regarding the previous proposed method with a low computational cost increase.
|
|
|
Jialuo Chen, Pau Riba, Alicia Fornes, Juan Mas, Josep Llados and Joana Maria Pujadas-Mora. 2018. Word-Hunter: A Gamesourcing Experience to Validate the Transcription of Historical Manuscripts. 16th International Conference on Frontiers in Handwriting Recognition.528–533.
Abstract: Nowadays, there are still many handwritten historical documents in archives waiting to be transcribed and indexed. Since manual transcription is tedious and time consuming, the automatic transcription seems the path to follow. However, the performance of current handwriting recognition techniques is not perfect, so a manual validation is mandatory. Crowdsourcing is a good strategy for manual validation, however it is a tedious task. In this paper we analyze experiences based in gamification
in order to propose and design a gamesourcing framework that increases the interest of users. Then, we describe and analyze our experience when validating the automatic transcription using the gamesourcing application. Moreover, thanks to the combination of clustering and handwriting recognition techniques, we can speed up the validation while maintaining the performance.
Keywords: Crowdsourcing; Gamification; Handwritten documents; Performance evaluation
|
|
|
Lluis Gomez, Marçal Rusiñol and Dimosthenis Karatzas. 2017. LSDE: Levenshtein Space Deep Embedding for Query-by-string Word Spotting. 14th International Conference on Document Analysis and Recognition.
Abstract: n this paper we present the LSDE string representation and its application to handwritten word spotting. LSDE is a novel embedding approach for representing strings that learns a space in which distances between projected points are correlated with the Levenshtein edit distance between the original strings.
We show how such a representation produces a more semantically interpretable retrieval from the user’s perspective than other state of the art ones such as PHOC and DCToW. We also conduct a preliminary handwritten word spotting experiment on the George Washington dataset.
|
|
|
Pau Riba, Anjan Dutta, Josep Llados, Alicia Fornes and Sounak Dey. 2017. Improving Information Retrieval in Multiwriter Scenario by Exploiting the Similarity Graph of Document Terms. 14th International Conference on Document Analysis and Recognition.475–480.
Abstract: Information Retrieval (IR) is the activity of obtaining information resources relevant to a questioned information. It usually retrieves a set of objects ranked according to the relevancy to the needed fact. In document analysis, information retrieval receives a lot of attention in terms of symbol and word spotting. However, through decades the community mostly focused either on printed or on single writer scenario, where the
state-of-the-art results have achieved reasonable performance on the available datasets. Nevertheless, the existing algorithms do not perform accordingly on multiwriter scenario. A graph representing relations between a set of objects is a structure where each node delineates an individual element and the similarity between them is represented as a weight on the connecting edge. In this paper, we explore different analytics of graphs constructed from words or graphical symbols, such as diffusion, shortest path, etc. to improve the performance of information retrieval methods in multiwriter scenario
Keywords: document terms; information retrieval; affinity graph; graph of document terms; multiwriter; graph diffusion
|
|
|
E. Royer, J. Chazalon, Marçal Rusiñol and F. Bouchara. 2017. Benchmarking Keypoint Filtering Approaches for Document Image Matching. 14th International Conference on Document Analysis and Recognition.
Abstract: Best Poster Award.
Reducing the amount of keypoints used to index an image is particularly interesting to control processing time and memory usage in real-time document image matching applications, like augmented documents or smartphone applications. This paper benchmarks two keypoint selection methods on a task consisting of reducing keypoint sets extracted from document images, while preserving detection and segmentation accuracy. We first study the different forms of keypoint filtering, and we introduce the use of the CORE selection method on
keypoints extracted from document images. Then, we extend a previously published benchmark by including evaluations of the new method, by adding the SURF-BRISK detection/description scheme, and by reporting processing speeds. Evaluations are conducted on the publicly available dataset of ICDAR2015 SmartDOC challenge 1. Finally, we prove that reducing the original keypoint set is always feasible and can be beneficial
not only to processing speed but also to accuracy.
|
|
|
Albert Berenguel, Oriol Ramos Terrades, Josep Llados and Cristina Cañero. 2017. e-Counterfeit: a mobile-server platform for document counterfeit detection. 14th IAPR International Conference on Document Analysis and Recognition.
Abstract: This paper presents a novel application to detect counterfeit identity documents forged by a scan-printing operation. Texture analysis approaches are proposed to extract validation features from security background that is usually printed in documents as IDs or banknotes. The main contribution of this work is the end-to-end mobile-server architecture, which provides a service for non-expert users and therefore can be used in several scenarios. The system also provides a crowdsourcing mode so labeled images can be gathered, generating databases for incremental training of the algorithms.
|
|
|
J. Chazalon and 9 others. 2017. SmartDoc 2017 Video Capture: Mobile Document Acquisition in Video Mode. 1st International Workshop on Open Services and Tools for Document Analysis.
Abstract: As mobile document acquisition using smartphones is getting more and more common, along with the continuous improvement of mobile devices (both in terms of computing power and image quality), we can wonder to which extent mobile phones can replace desktop scanners. Modern applications can cope with perspective distortion and normalize the contrast of a document page captured with a smartphone, and in some cases like bottle labels or posters, smartphones even have the advantage of allowing the acquisition of non-flat or large documents. However, several cases remain hard to handle, such as reflective documents (identity cards, badges, glossy magazine cover, etc.) or large documents for which some regions require an important amount of detail. This paper introduces the SmartDoc 2017 benchmark (named “SmartDoc Video Capture”), which aims at
assessing whether capturing documents using the video mode of a smartphone could solve those issues. The task under evaluation is both a stitching and a reconstruction problem, as the user can move the device over different parts of the document to capture details or try to erase highlights. The material released consists of a dataset, an evaluation method and the associated tool, a sample method, and the tools required to extend the dataset. All the components are released publicly under very permissive licenses, and we particularly cared about maximizing the ease of
understanding, usage and improvement.
|
|