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Abstract—In this paper we present the LSDE string represen-
tation and its application to handwritten word spotting. LSDE is
a novel embedding approach for representing strings that learns a
space in which distances between projected points are correlated
with the Levenshtein edit distance between the original strings.
We show how such a representation produces a more semantically
interpretable retrieval from the user’s perspective than other
state of the art ones such as PHOC and DCToW. We also
conduct a preliminary handwritten word spotting experiment
on the George Washington dataset.

I. INTRODUCTION

Handwritten word spotting refers to the image retrieval task
focused to obtain a ranked list of word images that are relevant
to a user’s cast query. Since the seminal papers of Manmatha
et al. [1], [2] that introduced the approach of handwritten
keyword spotting as an alternative to recognition more than
twenty years ago, many advances have been proposed. The
performance achieved on public datasets has been steadily
increasing with the proposal of better feature representations
and retrieval strategies. In addition to the overall retrieval
accuracy, many other advances have been made as well.
In particular, two main aspects received a lot of attention
lately. On one hand, segmentation-free methods have been
proposed [3], [4], [S] and, on the other hand, query-by-string
techniques have emerged [6], [7], [8], [9], [10], [11], [12].

A standard procedure for query-by-string word spotting is
to define vectorial representations for both the word images
and the text string queries. A subsequent embedding step is
then used in order to map those two different representations
into a common space in which distances can be computed
between words in either modality. Several approaches have
been proposed in order to compute these embeddings, such as
LSA [6], CCA [8] or the use of CNNs [7].

Although in the literature there is a plethora of different
visual feature proposals in order to represent word images,
researchers scarcely focus on how the text strings are actually
described. In [6], one of the first works to introduce such
an embedding framework, Aldavert et al. proposed to encode
strings by a bag of n-grams. Later, Almazidn et al. [8]
generalized this basic description and proposed the Pyramidal
Histogram of Characters (PHOC) descriptor, that has been
widely used since. In [11], Wilkinson et al. proposed the
DCToW representation based on a discrete cosine transform
over a character appearance vector. All these string represen-
tations were hand-crafted and might not be as powerful or
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Fig. 1. LSDE learns an embedding space in which Euclidean distances
correlate with the edit distance (lev(-,-)) between strings.

discriminative as desired. In the case of visual descriptions,
we seek a representation that forces visually similar words
(e.g. different instances of the same word) to nearby points
in the description space. In the same sense, we should extend
this notion of preserving distances to the string domain and
seek representations that preserve the distance between strings.
However, this is not guaranteed by existing representations, as
small changes in a string might produce strong changes in
both PHOC and DCToW representations.

The main motivation of our work is to enhance word
spotting methods by introducing a better common embedding
space, where string distances are preserved. Our research
hypothesis is that an embedding space in which Euclidean
distances correlate with the Levenshtein edit distance between
strings, should have more descriptive power and be more
generic, leading to more semantically interpretable, from the
user’s perspective, retrieval results when spotting words within
a collection.

In this paper we present a novel embedding approach that
learns a string embedding space in which distances between
points are correlated with the Levenshtein edit distance [13]
between the two original strings. Then we show how word
images can be projected in the same space enabling thus multi-
modal retrieval. Finally, we introduce a fine-tuning mechanism
that adjusts the embedding space in a joint learning process.
We compare our proposed LSDE (Levenshtein Space Deep
Embedding) representation with the PHOC and DCToW rep-
resentations and demonstrate that the LSDE representation is
indeed much better correlated to the edit distance than the
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Fig. 2. a) Matrix representation of strings: a text string is encoded as a 27 X 24 matrix where columns correspond the one-hot vector representations of
characters. b) A shallow CNN, composed by one convolution and one fully connected layer, transforms the input matrix representation into a 4096-d real
valued vector. The network is trained with a siamese setup to output vectors whose Euclidean distance is equal to the edit distance of the input strings’ pair.

rest. Then we conduct a preliminary handwritten word spotting
experiment to test its performance.

The rest of this paper is organized as follows. Section II
presents the proposed methodology for learning the Leven-
shtein Distance Space for string embedding, and the subse-
quent image embedding in the same space for the handwritten
word spotting task. Section III provides the implementation
details of the proposed networks and training procedures.
Section IV presents the experimental results that were obtained
while conclusions are drawn in Section V.

II. ARCHITECTURE

Our goal is to learn a word representation in which both
text strings and word images are embedded in a common
Levenshtein space. Such a space has the following interesting
property: the Euclidean distance between two points in this
space is equivalent to the Levenshtein distance of the words
they represent.

For this, we start by learning a string embedding model
in which text strings are transformed into vectors with the
aforementioned property. Then, we use the string embedding
model as a teacher to train a convolutional neural network
so that, given a word image as input, it predicts at its output
the vector representation of its transcription as learned by the
string embedding model. Finally, we construct a deep image-
string embedding model by jointly fine-tuning the pre-trained
image and string models. These three embedding models are
detailed next.

A. Text String Embedding

In order to feed text strings into a convolutional neural
network we represent them in a /N x M matrix form, where [NV
is the number of possible characters (e.g. N = 26 for the case
of the lowercase Latin characters set) and M is the maximum
desired word length (24 in our case). This way each encoded
character corresponds to a one-hot vector in the corresponding
matrix column for its particular position on the string. Strings

are made fixed length M by adding trailing empty character
symbols at the end. Figure 2 illustrates an example of this
matrix representation for the text string “animals”.

Upon this matrix representation of text strings our CNN
model applies a convolutional layer with 256 kernels of size
27 x 3 and a fully connected layer with 4096 output neurons.
Figure 2 depicts the architecture of our string embedding
model. Despite its simplicity this architecture is the one that
has provided a better trade-off between distance approximation
and time performance among the many different architectures
we have tried.

The network is trained with a siamese setup, presented with
arbitrary pairs of text strings, using the following loss function:

L= (Z(ﬁstrla ﬁstr2)2 - le’l)(St’f‘]-7 St'{‘2))2 (l)

where strl and str2 are two strings, Us;-1 and ¥g,.o are the
CNN output vectors for their respective matrix representations,
and lev(-,-) denotes the Levenshtein edit distance. As it can
be seen, this simple loss function drives the CNN to learn
the optimal transformation of strings into a vectorial form
such that the squared Euclidean distance between vectors is
equivalent to the Levenshtein edit distance of their originating
strings.

It should be noted here that when training the string
embedding model, we benefit of two important details: (1) the
proposed CNN model is shallow and thus its inference time is
rather small compared with deeper models, and (2) the avail-
able training data is unlimited. We can easily aim at a training
procedure that randomly samples pairs of strings from a corpus
with many thousands words and expect the network to see
several millions of examples. We give concrete implementation
details on how we have trained the string embedding model
in the next section. We also provide empirical evidence of the
effectiveness of the proposed model to approximate the true
Levenshtein distance of arbitrary word pairs in section IV-A.
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Fig. 3. Diagram of the CNN used for the image embedding model.

B. Image Embedding

Once the string embedding model is trained we can use it to
teach an image embedding model so that, given a word image
as input, it regresses at its output the LSDE representation
of the corresponding string provided by the string embedding
model.

For this second CNN model we adopt the architecture of the
holistic word recognition network from Jaderberg et al. [14]
as shown in Figure 3. To use it in our framework, we replace
the softmax output layer by a fully connected layer with
4096 output neurons and Sigmoid activations, thus having
the same dimensionality at the output (4096-d) as the LSDE
representation. In this model, input images are resized to a
fixed size of 32 x 100.

At training time either the Cross Entropy or Euclidean
loss functions can be used to learn the optimal weights for
embedding images into our learned Levenshtein space. In our
case what proved to be more effective was to first train the
network with a Cross Entropy loss and afterwards fine-tune it
with an Euclidean loss. We give the implementation details in
the next section.

C. Deep Image-String Levenshtein Space Embedding

Figure 4 illustrates the training architecture of the joint
image-string embedding. We feed the joint model with pairs
of word images (I, I3) and their corresponding transcriptions
(strl, str2), that are transformed respectively by the image
and string embedding models, thus providing four output
vectors: two for the images (wr,,wr,) and two for the tran-
scription strings (¥Us¢r1, Ustr2). Under this design we define
three different loss functions, (L;;, Lss, L;s), that are applied
respectively to the vector representations of pairs of images
(L;;), pairs of strings (Lss), and image-string combinations
(Lis):

@ = Q_(@n.d1)° —lev(strl,str2))” @)
. = (Z(@tn,%wgf — lev(strl, str2))2 3)
@ = (Z(w11765tr2)2 - lev(strl, St’r‘2))2 (4)

The joint image-string embedding is initialized from the two
trained models described in the previous sections. And the
combined loss L = L;; + Lss + L;s improves both models
by fostering Euclidean-Levenshtein equivalence among all
possible pairs of words representations.

At test time, the joint model can be used in a straightforward
manner for query-by-string word spotting. When a new query
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Fig. 4. The joint image-string embedding fosters the Euclidean-Levenshtein
equivalence among all possible pairs of words representations.

string arrives, we first compute its vector representation using
the string embedding model and then rank the set of word
images according to the Euclidean distance in the embedding
space of their vector representations with the query one. In
the experimental section we show how the ranking produced
in this way does not only perform well at retrieving relevant
words in top rankings, but also obeys the Levenshtein space
principle by ranking first the words with a smaller edit
distance.

III. IMPLEMENTATION DETAILS

We have implemented the embedding models using the
Tensorflow [15] and Caffe [16] frameworks.

The text string embedding model is composed by a single
convolutional layer with 256 kernels of size 27 x 3 and a
fully connected layer with 4096 output neurons, with Rectified
Linear Units (ReLU) activations in both layers. We have
trained this model with a Stochastic Gradient Descent (SGD)
optimizer for 5 million iterations, using a batch size of 32,
and an initial learning rate of 0.00001 that is halved every
million iterations. The training pairs of text strings are ran-
domly sampled from the “Words” corpus of the NLPT Python
library [17], which contains 236, 736 English words. On every
batch we force half of the training pairs to be variations of
the same word: the first word is randomly sampled and its
couple is set to be the same word with a random number of
edit operations. E.g. if the first word is “letters”, the second
word may become “xetters”, “litters”, “cutters”, etc.

The image embedding CNN model is adapted from
the holistic word recognition model proposed by Jader-
berg et al. [14]. It has four convolutional layers and two
fully connected layers, with ReLUs after each layer except
for the last one in which we plug a Sigmoid activation.



The convolutional layers have 64, 128, 256, and 512 square
filters respectively with kernel size of 3 x 3, stride = 1 and
padding = 2. Max-pooling layers with kernel size 2 x 2 and
stride = 2 follow the first three convolutional layers. The two
fully connected layers have 4096 units.

We train the image embedding network using the RM-
SProp! optimizer in two stages. First we initialize the network
with a standard multinomial logistic regression loss with
dropout [18], following that we fine-tune the weights with an
Euclidean (sum-of-squares) loss. In both stages we perform
250,000 iterations with a batch size of 16 and an initial
learning rate of 0.0001 that is decreased using the following
decay policy: Ir = lrg * (1 + ~ - iter)(=#), where lrg is the
initial learning rate, iter is the current iteration, and ~y, 5 are
two parameters set to v = 0.0001 and 8 = 0.75. At training
time we adopt the data augmentation strategy described in
Sudholt et al. [7].

Finally, the joint image-string embedding model is ini-
tialized from the two pre-trained models described so far.
The weights of both models are fine-tuned jointly using the
multiple loss strategy detailed in section II. We train the joint
model with SGD for one million iterations, using a batch size
of 16, and an initial learning rate of 0.00001 that is halved
every 250, 000 iterations. The training pairs of image-strings
are randomly sampled from the training data but we force half
of the samples on every batch to be words with a maximum
edit distance of 3, thus focussing the learning on the most
difficult examples.

IV. EXPERIMENTS

We present two different sets of experiments, the first
one dealing just with the LSDE text string representation
and the other ones dealing with the query-by-string spotting
application.

A. LSDE string representations

In order to test the performance of the LSDE representation
we carried out an initial string retrieval experiment aimed
at demonstrating that our learned text string embedding is
more meaningful than other handcrafted string representations
such as PHOC and DCToW. We considered the well-known
Brown, Gutenberg and Reuters corpora [17] composed of
46.275, 41.504 and 29.190 unique words respectively. For
this experiment we randomly selected 1000 words from each
corpus to be used as queries and then ranked the rest of
the corpus in terms of similarity in the LSDE space. What
we expect to demonstrate is that our proposed embedding
ranks words that are “similar” to the query in terms of their
Lvenshtein edit distance better than when using PHOC or
DCToW descriptions.

In order to assess such performance, we can not use
the classical mean average precision measure since it only
considers the ranking order of the true positives by using a
binary relevance assessment. Either a word is deemed to be

1 http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

TABLE I
NDCG MEASURES FOR THE STRING RETRIEVAL EXPERIMENT

Method Brown  Gutenberg  Reuters
LSDE 99.022  98.895 98.791
PHOC 98.211  98.193 96.583
DCToW 97.584  97.562 95.868
Random Sorting  94.424  93.942 92.194
TABLE II
MSE BETWEEN LSDE SPACE DISTANCES AND TRUE LEVENSHTEIN EDIT
DISTANCES
Method  Brown  Gutenberg  Reuters
LSDE 0.7121  0.6301 0.6786

relevant to the query or not. In this experiment we are trying
to evaluate how good the rankings are produced in terms of
string similarity, and thus a binary relevance assessment is
not enough. We choose thus to use the normalized discounted
cumulative gain (nDCG) measure [19], that defines a gradual
relevance score, computed as follows:

DCG
nDCG, = TCGZ’
where REL| e
IbCG Z log2 i+1)’
and

P
rel;

Gp=) — |

P ; logy (i + 1)

being p a rank position (the full corpus length in our case),
|REL| being the retrieved elements that are graded according
to a relevance score rel;. In our setup, we gave the following
rel scores of 15, 10, 5 and 3 to all words with edit distances 1,
2, 3 and 4 respectively, and a null relevance to words with edit
distances greater than 4. We present the nDCG measures in
Table I obtained with the LSDE, PHOC and DCToW methods
as well as with a random sorting of the words, just to put
into perspective that small differences in the nDCG score
are really meaningful. We observe that the proposed LSDE
method outperforms both PHOC and DCToW in all the three
corpora.

In order to further prove that the LSDE string representa-
tions are more meaningful than PHOC and DCToW, we com-
puted all the pair-wise distances of words within the Brown
corpus and present in Figure 5 how well they correlate with the
true Levenshtein edit distance. We appreciate that both PHOC
and DCToW do not correlate with the edit distance, even yield-
ing very high scores when comparing strings that only differ
in a few characters. However, the Euclidean distance in the
LSDE space provides a good approximation of the Levenshtein
distance for a wide word spectrum, just showing a small decay
for words with very high edit distances. We present in Table II



the Mean Square Errors (MSE) between LSDE representations
and true unnormalized Levenshtein edit distances showing how
the LSDE distance is a good approximation of the Levenshtein
distance.

B. Word Spotting

For the query-by-string word spotting task we use the
George Washington (GW) dataset [20]. The GW dataset was
created from the George Washington letters at the Library of
Congress, a collection dated from the 18th century. It consists
in a set of 20 pages, and 4, 860 word instances of 1, 124 unique
words. While there is no official partition for the GW dataset,
we follow the approach of [21], [6], [8] that splits the dataset
in two sets at word level containing 75% of the words for
training purposes and the remaining 25% for test. This data
partition is repeated four times for cross validation purposes,
here we make use of the same cross validation fold as in [8],
and provide average results.

In query-by-string word spotting, given a string query, the
goal is to retrieve all word image instances in the test set that
match the query. Following the standard evaluation protocol
for the GW dataset we use all unique transcription strings in
the test partition as queries. Then, we rank all word images in
the test set by their similarity with the query string and report
the mean average precision (mAP) for the entire set as the
final performance measure.

Table III compares our method with the state of the art in
query-by-string word spotting on the GW dataset. We appreci-
ate the competitive performance of the proposed method, while
using a notably smaller CNN model for the image embedding
than the ones used in some other recent methods [7], [11].

But using mAP to assess the retrieval performance might be
misleading, since mAP does not care at which edit distance the
representation of a false positive is from the query. Even if we
obtain a lower mAP than other methods, our method is able
to provide more human understandable ranking by proposing
earlier words that are not an exact match to the query, but
are close in the string distance sense. The LSDE ability to
retrieve “similar” words in terms of Levenshtein distance is
first evaluated showing some qualitative results in Figure 6, in
which we can see that the edit distances of the false positive
words are usually quite small. In addition, Figure 7 plots the
average edit distance between the query and the transcriptions
of the word images retrieved in the first top-200 results, where
we see that even considering the topmost 100 results, we are
still no more than 4 character operations apart from the query
string.

V. CONCLUSIONS

In this paper we have presented the LSDE string represen-
tation and its application to handwritten word spotting. LSDE
is a novel embedding approach for representing strings that
learns a space in which distances between projected points
are correlated with the Levenshtein edit distance between the
original strings. We have experimentally demonstrated that
the proposed representation has better semantic interpretation

TABLE III
MEAN AVERAGE PRECISIONS FOR STATE-OF-THE ART QUERY-BY-STRING
METHODS IN THE GW DATASET

Method QBS mAP
Aldavert et al. [6] 56.54
Frinken et al. [21] 84.00
Almazén et al. [8] 91.29
Sudholt et al. [7] 92.64
Krishnan er al. [10] 92.84
Wilkinson et al. [11] 93.69
LSDE 91.31
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Fig. 7. Average edit distance between query and transcriptions of the query-
by-string experiment

and superior behaviour than other state of the art ones such
as PHOC and DCToW. Moreover, we have also shown a
preliminary handwritten word spotting method using LSDE
that yields competitive results to the state of the art on the
George Washington dataset while using a smaller CNN model
for image embedding. As further improvements, we plan to
work on proposing a segmentation-free approach with the use
of sliding windows and to avoid the image resize step by using
a Spatial Pyramid Pooling layer in the image embedding net.
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