|
Albert Gordo, Florent Perronnin and Ernest Valveny. 2013. Large-scale document image retrieval and classification with runlength histograms and binary embeddings. PR, 46(7), 1898–1905.
Abstract: We present a new document image descriptor based on multi-scale runlength
histograms. This descriptor does not rely on layout analysis and can be
computed efficiently. We show how this descriptor can achieve state-of-theart
results on two very different public datasets in classification and retrieval
tasks. Moreover, we show how we can compress and binarize these descriptors
to make them suitable for large-scale applications. We can achieve state-ofthe-
art results in classification using binary descriptors of as few as 16 to 64
bits.
Keywords: visual document descriptor; compression; large-scale; retrieval; classification
|
|
|
Anjan Dutta, Josep Llados and Umapada Pal. 2013. A symbol spotting approach in graphical documents by hashing serialized graphs. PR, 46(3), 752–768.
Abstract: In this paper we propose a symbol spotting technique in graphical documents. Graphs are used to represent the documents and a (sub)graph matching technique is used to detect the symbols in them. We propose a graph serialization to reduce the usual computational complexity of graph matching. Serialization of graphs is performed by computing acyclic graph paths between each pair of connected nodes. Graph paths are one-dimensional structures of graphs which are less expensive in terms of computation. At the same time they enable robust localization even in the presence of noise and distortion. Indexing in large graph databases involves a computational burden as well. We propose a graph factorization approach to tackle this problem. Factorization is intended to create a unified indexed structure over the database of graphical documents. Once graph paths are extracted, the entire database of graphical documents is indexed in hash tables by locality sensitive hashing (LSH) of shape descriptors of the paths. The hashing data structure aims to execute an approximate k-NN search in a sub-linear time. We have performed detailed experiments with various datasets of line drawings and compared our method with the state-of-the-art works. The results demonstrate the effectiveness and efficiency of our technique.
Keywords: Symbol spotting; Graphics recognition; Graph matching; Graph serialization; Graph factorization; Graph paths; Hashing
|
|
|
Muhammad Muzzamil Luqman, Jean-Yves Ramel, Josep Llados and Thierry Brouard. 2013. Fuzzy Multilevel Graph Embedding. PR, 46(2), 551–565.
Abstract: Structural pattern recognition approaches offer the most expressive, convenient, powerful but computational expensive representations of underlying relational information. To benefit from mature, less expensive and efficient state-of-the-art machine learning models of statistical pattern recognition they must be mapped to a low-dimensional vector space. Our method of explicit graph embedding bridges the gap between structural and statistical pattern recognition. We extract the topological, structural and attribute information from a graph and encode numeric details by fuzzy histograms and symbolic details by crisp histograms. The histograms are concatenated to achieve a simple and straightforward embedding of graph into a low-dimensional numeric feature vector. Experimentation on standard public graph datasets shows that our method outperforms the state-of-the-art methods of graph embedding for richly attributed graphs.
Keywords: Pattern recognition; Graphics recognition; Graph clustering; Graph classification; Explicit graph embedding; Fuzzy logic
|
|
|
Partha Pratim Roy, Umapada Pal, Josep Llados and Mathieu Nicolas Delalandre. 2012. Multi-oriented touching text character segmentation in graphical documents using dynamic programming. PR, 45(5), 1972–1983.
Abstract: 2,292 JCR
The touching character segmentation problem becomes complex when touching strings are multi-oriented. Moreover in graphical documents sometimes characters in a single-touching string have different orientations. Segmentation of such complex touching is more challenging. In this paper, we present a scheme towards the segmentation of English multi-oriented touching strings into individual characters. When two or more characters touch, they generate a big cavity region in the background portion. Based on the convex hull information, at first, we use this background information to find some initial points for segmentation of a touching string into possible primitives (a primitive consists of a single character or part of a character). Next, the primitives are merged to get optimum segmentation. A dynamic programming algorithm is applied for this purpose using the total likelihood of characters as the objective function. A SVM classifier is used to find the likelihood of a character. To consider multi-oriented touching strings the features used in the SVM are invariant to character orientation. Experiments were performed in different databases of real and synthetic touching characters and the results show that the method is efficient in segmenting touching characters of arbitrary orientations and sizes.
|
|
|
Joan Mas, Josep Llados, Gemma Sanchez and J.A. Jorge. 2010. A syntactic approach based on distortion-tolerant Adjacency Grammars and a spatial-directed parser to interpret sketched diagrams. PR, 43(12), 4148–4164.
Abstract: This paper presents a syntactic approach based on Adjacency Grammars (AG) for sketch diagram modeling and understanding. Diagrams are a combination of graphical symbols arranged according to a set of spatial rules defined by a visual language. AG describe visual shapes by productions defined in terms of terminal and non-terminal symbols (graphical primitives and subshapes), and a set functions describing the spatial arrangements between symbols. Our approach to sketch diagram understanding provides three main contributions. First, since AG are linear grammars, there is a need to define shapes and relations inherently bidimensional using a sequential formalism. Second, our parsing approach uses an indexing structure based on a spatial tessellation. This serves to reduce the search space when finding candidates to produce a valid reduction. This allows order-free parsing of 2D visual sentences while keeping combinatorial explosion in check. Third, working with sketches requires a distortion model to cope with the natural variations of hand drawn strokes. To this end we extended the basic grammar with a distortion measure modeled on the allowable variation on spatial constraints associated with grammar productions. Finally, the paper reports on an experimental framework an interactive system for sketch analysis. User tests performed on two real scenarios show that our approach is usable in interactive settings.
Keywords: Syntactic Pattern Recognition; Symbol recognition; Diagram understanding; Sketched diagrams; Adjacency Grammars; Incremental parsing; Spatial directed parsing
|
|
|
Umapada Pal, Partha Pratim Roy, N. Tripathya and Josep Llados. 2010. Multi-oriented Bangla and Devnagari text recognition. PR, 43(12), 4124–4136.
Abstract: There are printed complex documents where text lines of a single page may have different orientations or the text lines may be curved in shape. As a result, it is difficult to detect the skew of such documents and hence character segmentation and recognition of such documents are a complex task. In this paper, using background and foreground information we propose a novel scheme towards the recognition of Indian complex documents of Bangla and Devnagari script. In Bangla and Devnagari documents usually characters in a word touch and they form cavity regions. To take care of these cavity regions, background information of such documents is used. Convex hull and water reservoir principle have been applied for this purpose. Here, at first, the characters are segmented from the documents using the background information of the text. Next, individual characters are recognized using rotation invariant features obtained from the foreground part of the characters.
For character segmentation, at first, writing mode of a touching component (word) is detected using water reservoir principle based features. Next, depending on writing mode and the reservoir base-region of the touching component, a set of candidate envelope points is then selected from the contour points of the component. Based on these candidate points, the touching component is finally segmented into individual characters. For recognition of multi-sized/multi-oriented characters the features are computed from different angular information obtained from the external and internal contour pixels of the characters. These angular information are computed in such a way that they do not depend on the size and rotation of the characters. Circular and convex hull rings have been used to divide a character into smaller zones to get zone-wise features for higher recognition results. We combine circular and convex hull features to improve the results and these features are fed to support vector machines (SVM) for recognition. From our experiment we obtained recognition results of 99.18% (98.86%) accuracy when tested on 7515 (7874) Devnagari (Bangla) characters.
|
|
|
Miquel Ferrer, Ernest Valveny, F. Serratosa, K. Riesen and Horst Bunke. 2010. Generalized Median Graph Computation by Means of Graph Embedding in Vector Spaces. PR, 43(4), 1642–1655.
Abstract: The median graph has been presented as a useful tool to represent a set of graphs. Nevertheless its computation is very complex and the existing algorithms are restricted to use limited amount of data. In this paper we propose a new approach for the computation of the median graph based on graph embedding. Graphs are embedded into a vector space and the median is computed in the vector domain. We have designed a procedure based on the weighted mean of a pair of graphs to go from the vector domain back to the graph domain in order to obtain a final approximation of the median graph. Experiments on three different databases containing large graphs show that we succeed to compute good approximations of the median graph. We have also applied the median graph to perform some basic classification tasks achieving reasonable good results. These experiments on real data open the door to the application of the median graph to a number of more complex machine learning algorithms where a representative of a set of graphs is needed.
Keywords: Graph matching; Weighted mean of graphs; Median graph; Graph embedding; Vector spaces
|
|
|
Lluis Pere de las Heras, Joan Mas, Gemma Sanchez and Ernest Valveny. 2011. Wall Patch-Based Segmentation in Architectural Floorplans. 11th International Conference on Document Analysis and Recognition.1270–1274.
Abstract: Segmentation of architectural floor plans is a challenging task, mainly because of the large variability in the notation between different plans. In general, traditional techniques, usually based on analyzing and grouping structural primitives obtained by vectorization, are only able to handle a reduced range of similar notations. In this paper we propose an alternative patch-based segmentation approach working at pixel level, without need of vectorization. The image is divided into a set of patches and a set of features is extracted for every patch. Then, each patch is assigned to a visual word of a previously learned vocabulary and given a probability of belonging to each class of objects. Finally, a post-process assigns the final label for every pixel. This approach has been applied to the detection of walls on two datasets of architectural floor plans with different notations, achieving high accuracy rates.
|
|
|
Jon Almazan, Alicia Fornes and Ernest Valveny. 2011. A Non-Rigid Feature Extraction Method for Shape Recognition. 11th International Conference on Document Analysis and Recognition.987–991.
Abstract: This paper presents a methodology for shape recognition that focuses on dealing with the difficult problem of large deformations. The proposed methodology consists in a novel feature extraction technique, which uses a non-rigid representation adaptable to the shape. This technique employs a deformable grid based on the computation of geometrical centroids that follows a region partitioning algorithm. Then, a feature vector is extracted by computing pixel density measures around these geometrical centroids. The result is a shape descriptor that adapts its representation to the given shape and encodes the pixel density distribution. The validity of the method when dealing with large deformations has been experimentally shown over datasets composed of handwritten shapes. It has been applied to signature verification and shape recognition tasks demonstrating high accuracy and low computational cost.
|
|
|
Ernest Valveny and Enric Marti. 1999. Application of deformable template matching to symbol recognition in hand-written architectural draw. Proceedings of the Fifth International Conference on. Bangalore (India).
Abstract: We propose to use deformable template matching as a new approach to recognize characters and lineal symbols in hand-written line drawings, instead of traditional methods based on vectorization and feature extraction. Bayesian formulation of the deformable template matching allows combining fidelity to the ideal shape of the symbol with maximum flexibility to get the best fit to the input image. Lineal nature of symbols can be exploited to define a suitable representation of models and the set of deformations to be applied to them. Matching, however, is done over the original binary image to avoid losing relevant features during vectorization. We have applied this method to hand-written architectural drawings and experimental results demonstrate that symbols with high distortions from ideal shape can be accurately identified.
|
|