|
Lluis Gomez and Dimosthenis Karatzas. 2017. TextProposals: a Text‐specific Selective Search Algorithm for Word Spotting in the Wild. PR, 70, 60–74.
Abstract: Motivated by the success of powerful while expensive techniques to recognize words in a holistic way (Goel et al., 2013; Almazán et al., 2014; Jaderberg et al., 2016) object proposals techniques emerge as an alternative to the traditional text detectors. In this paper we introduce a novel object proposals method that is specifically designed for text. We rely on a similarity based region grouping algorithm that generates a hierarchy of word hypotheses. Over the nodes of this hierarchy it is possible to apply a holistic word recognition method in an efficient way.
Our experiments demonstrate that the presented method is superior in its ability of producing good quality word proposals when compared with class-independent algorithms. We show impressive recall rates with a few thousand proposals in different standard benchmarks, including focused or incidental text datasets, and multi-language scenarios. Moreover, the combination of our object proposals with existing whole-word recognizers (Almazán et al., 2014; Jaderberg et al., 2016) shows competitive performance in end-to-end word spotting, and, in some benchmarks, outperforms previously published results. Concretely, in the challenging ICDAR2015 Incidental Text dataset, we overcome in more than 10% F-score the best-performing method in the last ICDAR Robust Reading Competition (Karatzas, 2015). Source code of the complete end-to-end system is available at https://github.com/lluisgomez/TextProposals.
|
|
|
Sounak Dey and 6 others. 2017. Script independent approach for multi-oriented text detection in scene image. NEUCOM, 242, 96–112.
Abstract: Developing a text detection method which is invariant to scripts in natural scene images is a challeng- ing task due to different geometrical structures of various scripts. Besides, multi-oriented of text lines in natural scene images make the problem more challenging. This paper proposes to explore ring radius transform (RRT) for text detection in multi-oriented and multi-script environments. The method finds component regions based on convex hull to generate radius matrices using RRT. It is a fact that RRT pro- vides low radius values for the pixels that are near to edges, constant radius values for the pixels that represent stroke width, and high radius values that represent holes created in background and convex hull because of the regular structures of text components. We apply k -means clustering on the radius matrices to group such spatially coherent regions into individual clusters. Then the proposed method studies the radius values of such cluster components that are close to the centroid and far from the cen- troid to detect text components. Furthermore, we have developed a Bangla dataset (named as ISI-UM dataset) and propose a semi-automatic system for generating its ground truth for text detection of arbi- trary orientations, which can be used by the researchers for text detection and recognition in the future. The ground truth will be released to public. Experimental results on our ISI-UM data and other standard datasets, namely, ICDAR 2013 scene, SVT and MSRA data, show that the proposed method outperforms the existing methods in terms of multi-lingual and multi-oriented text detection ability.
|
|
|
Marçal Rusiñol and Josep Llados. 2009. A Performance Evaluation Protocol for Symbol Spotting Systems in Terms of Recognition and Location Indices. IJDAR, 12(2), 83–96.
Abstract: Symbol spotting systems are intended to retrieve regions of interest from a document image database where the queried symbol is likely to be found. They shall have the ability to recognize and locate graphical symbols in a single step. In this paper, we present a set of measures to evaluate the performance of a symbol spotting system in terms of recognition abilities, location accuracy and scalability. We show that the proposed measures allow to determine the weaknesses and strengths of different methods. In particular we have tested a symbol spotting method based on a set of four different off-the-shelf shape descriptors.
Keywords: Performance evaluation; Symbol Spotting; Graphics Recognition
|
|
|
Antonio Clavelli, Dimosthenis Karatzas, Josep Llados, Mario Ferraro and Giuseppe Boccignone. 2013. Towards Modelling an Attention-Based Text Localization Process. 6th Iberian Conference on Pattern Recognition and Image Analysis. Springer Berlin Heidelberg, 296–303. (LNCS.)
Abstract: This note introduces a visual attention model of text localization in real-world scenes. The core of the model built upon the proto-object concept is discussed. It is shown how such dynamic mid-level representation of the scene can be derived in the framework of an action-perception loop engaging salience, text information value computation, and eye guidance mechanisms.
Preliminary results that compare model generated scanpaths with those eye-tracked from human subjects are presented.
Keywords: text localization; visual attention; eye guidance
|
|
|
Jaume Gibert, Ernest Valveny and Horst Bunke. 2010. Graph of Words Embedding for Molecular Structure-Activity Relationship Analysis. 15th Iberoamerican Congress on Pattern Recognition.30–37. (LNCS.)
Abstract: Structure-Activity relationship analysis aims at discovering chemical activity of molecular compounds based on their structure. In this article we make use of a particular graph representation of molecules and propose a new graph embedding procedure to solve the problem of structure-activity relationship analysis. The embedding is essentially an arrangement of a molecule in the form of a vector by considering frequencies of appearing atoms and frequencies of covalent bonds between them. Results on two benchmark databases show the effectiveness of the proposed technique in terms of recognition accuracy while avoiding high operational costs in the transformation.
|
|
|
Hana Jarraya, Oriol Ramos Terrades and Josep Llados. 2017. Graph Embedding through Probabilistic Graphical Model applied to Symbolic Graphs. 8th Iberian Conference on Pattern Recognition and Image Analysis.
Abstract: We propose a new Graph Embedding (GEM) method that takes advantages of structural pattern representation. It models an Attributed Graph (AG) as a Probabilistic Graphical Model (PGM). Then, it learns the parameters of this PGM presented by a vector. This vector is a signature of AG in a lower dimensional vectorial space. We apply Structured Support Vector Machines (SSVM) to process classification task. As first tentative, results on the GREC dataset are encouraging enough to go further on this direction.
Keywords: Attributed Graph; Probabilistic Graphical Model; Graph Embedding; Structured Support Vector Machines
|
|
|
Lei Kang, Juan Ignacio Toledo, Pau Riba, Mauricio Villegas, Alicia Fornes and Marçal Rusiñol. 2018. Convolve, Attend and Spell: An Attention-based Sequence-to-Sequence Model for Handwritten Word Recognition. 40th German Conference on Pattern Recognition.459–472.
Abstract: This paper proposes Convolve, Attend and Spell, an attention based sequence-to-sequence model for handwritten word recognition. The proposed architecture has three main parts: an encoder, consisting of a CNN and a bi-directional GRU, an attention mechanism devoted to focus on the pertinent features and a decoder formed by a one-directional GRU, able to spell the corresponding word, character by character. Compared with the recent state-of-the-art, our model achieves competitive results on the IAM dataset without needing any pre-processing step, predefined lexicon nor language model. Code and additional results are available in https://github.com/omni-us/research-seq2seq-HTR.
|
|
|
Lluis Gomez, Andres Mafla, Marçal Rusiñol and Dimosthenis Karatzas. 2018. Single Shot Scene Text Retrieval. 15th European Conference on Computer Vision.728–744. (LNCS.)
Abstract: Textual information found in scene images provides high level semantic information about the image and its context and it can be leveraged for better scene understanding. In this paper we address the problem of scene text retrieval: given a text query, the system must return all images containing the queried text. The novelty of the proposed model consists in the usage of a single shot CNN architecture that predicts at the same time bounding boxes and a compact text representation of the words in them. In this way, the text based image retrieval task can be casted as a simple nearest neighbor search of the query text representation over the outputs of the CNN over the entire image
database. Our experiments demonstrate that the proposed architecture
outperforms previous state-of-the-art while it offers a significant increase
in processing speed.
Keywords: Image retrieval; Scene text; Word spotting; Convolutional Neural Networks; Region Proposals Networks; PHOC
|
|
|
Mohamed Ali Souibgui, Asma Bensalah, Jialuo Chen, Alicia Fornes and Michelle Waldispühl. 2023. A User Perspective on HTR methods for the Automatic Transcription of Rare Scripts: The Case of Codex Runicus Just Accepted. JOCCH, 15(4), 1–18.
Abstract: Recent breakthroughs in Artificial Intelligence, Deep Learning and Document Image Analysis and Recognition have significantly eased the creation of digital libraries and the transcription of historical documents. However, for documents in rare scripts with few labelled training data available, current Handwritten Text Recognition (HTR) systems are too constraint. Moreover, research on HTR often focuses on technical aspects only, and rarely puts emphasis on implementing software tools for scholars in Humanities. In this article, we describe, compare and analyse different transcription methods for rare scripts. We evaluate their performance in a real use case of a medieval manuscript written in the runic script (Codex Runicus) and discuss advantages and disadvantages of each method from the user perspective. From this exhaustive analysis and comparison with a fully manual transcription, we raise conclusions and provide recommendations to scholars interested in using automatic transcription tools.
|
|
|
Y. Patel, Lluis Gomez, Marçal Rusiñol, Dimosthenis Karatzas and C.V. Jawahar. 2019. Self-Supervised Visual Representations for Cross-Modal Retrieval. ACM International Conference on Multimedia Retrieval.182–186.
Abstract: Cross-modal retrieval methods have been significantly improved in last years with the use of deep neural networks and large-scale annotated datasets such as ImageNet and Places. However, collecting and annotating such datasets requires a tremendous amount of human effort and, besides, their annotations are limited to discrete sets of popular visual classes that may not be representative of the richer semantics found on large-scale cross-modal retrieval datasets. In this paper, we present a self-supervised cross-modal retrieval framework that leverages as training data the correlations between images and text on the entire set of Wikipedia articles. Our method consists in training a CNN to predict: (1) the semantic context of the article in which an image is more probable to appear as an illustration, and (2) the semantic context of its caption. Our experiments demonstrate that the proposed method is not only capable of learning discriminative visual representations for solving vision tasks like classification, but that the learned representations are better for cross-modal retrieval when compared to supervised pre-training of the network on the ImageNet dataset.
|
|