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Abstract. We propose a new Graph Embedding (GEM) method that
takes advantage of rich structural pattern representation. We learn the
Probabilistic Graphical Model (PGM) parameters by using Structured
Support Vector Machines (SSVM) and then we use it in the Attributed
Graph (AG) signature in a lower dimensional vectorial space. In this
paper, we report our encouraging first results on the GREC dataset.
Although they are not better that the current state-of-the-art, they are
good enough to continue our research on it.
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1 Introduction

Nowadays there are many tools that use Pattern Recognition (PR) techniques
to help us in our daily tasks. Such tools automatically extract features from in-
put signals and, using machine learning techniques are able to classify, suggest,
identify a wide range of objects. However, the complexity of some of these tasks
make that their overall performance are still far of being satisfactory enough.
Structural PR is a field that encodes structural information of input signals
to enrich the representation space and it improves the overall performance of
PR systems. They extract line segments and organize them into data structures
such as graphs. These data structures model two important aspects: the hier-
archical composition of sub-patterns from complex pattern; and the relations
between these sub-patterns. This problem is presented by the capacity of find-
ing sub-structures, sub-graph matching, and the computational complexity of
matching algorithm. Moreover, the difficulty is to define a general representa-
tion. Each problem has their specific graph representation with their own set
of attributes [1–3]. An other confrontation is to reduce the sensitivity to noise,
error tolerance.
In the last three decades, explicit Graph EMbedding (GEM) presents actually
a transformation in representation spaces. It allows to define approximate poly-
nomial solution for hard combinatorial problems. Among the advantages of this
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tool, we cite the dimensionality reduction, the sensitivity to noise and structural
information preservation. [4] presents recent works that are using the explicit
GEM applied on some PR applications. These works try to preserve the struc-
ture of data and avoid the noise as much as possible.
Here, we think that PGM can be useful since it is strong framework to define
probabilities over complex structure for these reasons: The probabilities allow us
to consider options that are unlikely, exclusive and exhaustive distortion possi-
bilities that can happen. Therefore, they are able to settle the noise sensitivity in
graphs since the errors are kind of extreme potentials. And The PGM presents
graph structure. So, we can say that PGM could be a solution for structure
reservation and noise reduce. The learning over PGM is a delightful traditional
problem [5, 6], called Structured Learning. One of the recent successful tech-
niques for prediction in Structured models is Structured Support Vector Ma-
chines (SSVM). It is based on the unsupervised learning of a parameter vector
that characterizes the PGM taking into account of its different interactions and
attributes. Due to this vector, the SSVM can predict within an inference task the
probabilities to decide the class of one graph. The difficulties at this point are
two: first define the different interactions and attributes; and second, parameter
learning. The first belongs to a modeling problem. And the experience tells us
which kind of attributes we should use to model our task. The second is related
to the parameter learning problem and herein, SSVM is a technique that we can
use to solve this problem. We can find more on parameter learning in [6].
In this paper we propose the use of PGM for GEM in order to estimate a param-
eter vector built from the graph attributes and structure. We have validate our
proposed model on a symbol dataset, GREC graphs [7]. The first obtained re-
sults are good enough to encourage our research in that direction. The literature
demonstrates other important GEM methods applied on symbol recognition [2,
8–12], we will only consider the latest to compare our idea with. We have struc-
tured the rest of the paper as follows. In section 2, we illustrate the related
works on Explicit GEM methods applied on Symbol Recognition. We introduce
the definitions and notations of the main concepts used, in section 3. In Sec-
tion 4, we detail the proposed model. In section 5, we discuss the tests applied
on the learning parameters and interpret the false classified graphs. Section 6
presents the conclusion and future work.

2 Related works

GEM approaches map either explicitly or implicitly graphs into high dimensional
spaces as we can perform the basic mathematical computations required by
various statistical PR techniques. The implicit GEM methods are based on graph
kernel which is a function defined as a dot product evaluated in graph space. A
strict limitation of implicit GEM is that it does not permit all operations that
could be defined on vector spaces [4]. In an other way, explicit GEM methods
explicitly embed an input graph into a feature vector and thus enable the use
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of all the methodologies and techniques devised for vector spaces. This feature
vector is of fixed size no matter is the size and order of graphs. It requires to
contain relevant representative features at the same time fairly is well generic
to describe any input graph. The most important challenges of explicit GEM
are the loss of structural information, attributes encoding and noisy impact [4].
We can cite some explicit GEM approaches from the state-of-the-art that tackle
with these problems in [4].
Topological Embedding method has important properties that are the topology
preservation and label encoding [13]. It uses a generic lexicon of topological
structures as a non isomorphic graphs network composed of n edges up to N .
The Attributes Statistic based Embedding method maps an AG into a naive
feature vector [14]. It computes the frequencies of simple sub-graph. It is limited
to node coordinates space attributes and no consideration for edge attributes.
The Fuzzy Multilevel Graph Embedding (FMGE) [2] method defines a vector
based on learning of histogram fuzzy intervals. It uses fuzzy logic to reduce noise,
substructures homogeneity and topology information to reserve the structure and
encoding labels edges and nodes to be generic.
So, for our work, we use the PGM to be generic, the structured learning to reduce
loss of information and the substructures homogeneity and topology information
to save the topology. Moreover, we cite [6] for structured training algorithms of
PGM such as SSVM (N-slack formulation), gradient descend, stochastic gradient
descend and sub-gradient methods. We chose to train the parameter vector of
PGM with SSVM algorithm.

3 Definitions and Notations

We define the concepts: explicit GEM, AG and Morgan Index (MI) [2, 3, 15].

Definition 1. Attributed graph (AG): Let AV and AE denote the domains of
possible values for attributed vertices and edges respectively. These domains are
assumed to include a special value that represents a null value of a vertex or an
edge. Here, the term attributed graph is used to refer to an undirected attributed
graph. An AG over (AV , AE) is defined to be a four-tuple:

AG = (V,E, µV , µE)

where V is a set of vertices, E ⊆ V × V is a set of edges, µV : V 7→ Ak
V V

is function assigning k attributes to vertices and, µE : E 7→ Al
E is a function

assigning l attributes to edges. The order of an AG is given by |V | i.e. the number
of vertices in AG. The size of AG is given by |E| i.e. the number of edges in
AG. The degree of a vertex vi in AG refers to the number of edges connected to
vi.
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Definition 2. Explicit Graph Embedding: Given an AG, explicit GEM is a func-
tion φ, which maps graph AG from graph space G to a point (f1, f2, . . . , fn) in
n dimensional vector space Rn. It is given as:

φ : G 7→ Rn

AG 7→ φ(AG) = (f1, f2, . . . , fn)

Definition 3. Morgan Index (MI): Given an AG and a node v ∈ AG, [15]
defines the Morgan Index of v as:

MIi(v) =

{
MI0(v) = node degree(v), if i = 0∑

u MIi−1(u), Otherwise

where u is a node adjacent to v, the MI of level 0 is the node degree, i is the level
of Morgan Index and MIi−1(u) is the summation of the adjacent nodes degree of
v in previous iteration i− 1 of the propagation MI technique.

Definition 4. A Probabilistic Graphical Model is defined by observed and hidden
variables X and Y as nodes of the graphical model and unary and pairwise poten-
tials Φ and Ψ as edges. The joint feature function after the parameter learning
defined by the conditional probability distribution:

P (Y |X,ω) =
1

Z(X,ω)
exp

 ∑
i∈nodes

ωiΦ(xi, yi)
∑

(i,j)∈edges

ωi,jΨ(xi,j , yi, yj)


where the partition function is:

Z(X,ω) =
∑

x∈nodes

exp

 ∑
i∈edges

ωiΦ(xi, yi)
∑

(i,j)∈E

ωi,jΨ(xi,j , yi, yj)


where ω = {ωi, ωi,j} is the set of unary and pairwise PGM learned parameters.

4 Graph EMbedding through Probabilistic Graphical
Model

To propose a new GEM idea, we thought about complex structure presented in
PGM. The training over a dataset defined by SSVM leads to the parameterized
conditional distribution of labels in PGM. It aims to find the best parameter
vector ω∗ that makes the probability distribution p(y|x, ω) close to p(y|x). The
structured learning problem formulation is explained in two steps: first, un-
supervised learning of PGM parameters; second, this parameter vector should
maximize to approximate the computation of predicted probabilities over the
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random variables in PGM. Here, we choose to use the Structural SVM to train
the PGM that represent our AG. We cite the N-Slack formulation of SSVM for
the training in our work in [5]. Our challenges are to answer these questions
about, learning (a) Are we using the best learning algorithm for our problem?
(b) Do we have enough data for training?; and regarding the PGM used to rep-
resent AG: Are we using the best representation? Can be other feature function
that better model the graph attribute?

4.1 Graph attributes and structure

As application framework in this paper, we have defined AGs or graphical sym-
bols from the GREC database. The graph nodes represent x, y and type and
graph edges frequency, type and angle. Here, we explain the different types of
encoded attributes associated to the graph and the different types of used graph
structures. First, we consider the following attributes: (a) Geometrical details:
geometrical attributes associated to the nodes and edges of the AG, extracted
from symbol drawing such as length and orientation of line and coordinates x
and y of intersection points; (b) Structural details: defined by node degree, sub-
graph homogeneity defined in [2]; (c) Topological details: MI, with fixed level.
Three different graph structures have been studied:(i) Full k-connected graph:
the graph consists on connected attributed nodes with attributed edges, or hole
AG; (ii) Void k-connected graph: the graph is composed of connected attributed
nodes extracted from the AG; (iii) Unconnected graph: we consider only un-
connected attributed nodes derived from AG. We embed each numeric/symbolic
attribute in each graph. Also, structural and topological attributes also are added
to nodes and edges. We used a Condition Random Field (CRF) model for the
cases of graph structures are unconnected graph and void k-connected graph.
And in the case of full connected graph, we used the Edge feature CRF model.

4.2 Model the AG as PGM

We built the PGM based on an AG. We are given an AG = (V,E, µV , µE) and
a PGM defined by X are observed variables and Y are hidden variables and
dependencies between these variables. xi defines the label for the node vi based
on its attributes µvi and yi is hidden variable associated to it. The variables are
connected according to AG structure of the input data, defined as the conditional
independence structure of PGM. Thus, xi,j defines the attributes of the edge (i,j).
The distribution probability defined over the PGM previously is based on the
definition 4 and the notation defined here based on the AG as input data. The
output of the proposed explicit GEM, is the n dimensional learned parameters
vector defined by ω = (ωi, ωi,j). And n is the sum of Unary matrix dimension U
and Pairwise matrix dimension P where U number of classes × number of node
attributes, and P number of classes2× number of edge attributes. Yn is the n
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dimensional space that represents all the possible label configurations. We deal
with classification problem. The label for the entire AG can be one between 22
classes of GREC dataset. We use a majority vote strategy to assign a label to
AG. On other words, we count the occurrences of the labels over all the nodes
of one AG, the result label is the most occurring, chosen as AG label. The node
labeling problem y′ is defined as maximization problem : y′ = argmaxy∈Yn y.
We see in Fig. 1 an example of modeling a symbol of shape square as undirected
graphical model, PGM where the label of the graph is YG.

Fig. 1: an AG example of square symbol with four nodes connected with for edges
where xi is the one node attributes and xi,j is the one edge attributes represented by
Probabilistic Graphical Model.

5 Experimentation

We test our method based on GREC dataset because its graphs have numeric
and symbolic attributes. GREC Graphs are constructed as follows. The images
occur at five different distortion levels. For each distortion level one example of
a drawing is given. Depending on the distortion level, either erosion, dilation, or
other morphological operations are applied. Finally, graphs are extracted from
the resulting denoised images by tracing the lines from end to end and detecting
intersections as well as corners. Ending points, corners, intersections and circles
are represented by nodes and labeled with a 2-dimensional attribute giving their
position. The nodes are connected by undirected edges which are labeled as line
or arc. An additional attribute specifies the angle with respect to the horizontal
direction or the diameter in case of arcs. For an adequately sized set, all graphs
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are distorted 9 times to obtain a data set containing 1,100 graphs uniformly
distributed over the 22 classes. The maximum number of nodes and edges is
respectively 25 and 30. They are balanced between training (286) and validation
(286) and test (528). We computed some attributes as explained in 4.1. The level
is equal to 2 for MI. We used Structured training library pystruct [16], particu-
larly SSVM on its N-Slack formulation. Next, we performed several experiments
to study the performance of the proposed GEM. First, we study the stability of
the N-Slack algorithm depending on 3 parameters: the number of iterations, the
regularization parameter C and the inference algorithm. Second, we evaluate the
impact of the different attributes on the Accuracy Rate (AR). Then, we analyze
the classification errors.

5.1 Training algorithm parameters impact

We study the strength of the training algorithm SSVM. We consider the three
parameters of SSVM. The first parameter is the iteration that is the maximum
number of steps over dataset to find the constraints of the SSVM algorithm.
Secondly, the parameter C is the penalization parameter of the SSVM as de-
fined in [5].The third parameter is the inference algorithm used on training, by
the N-Slack algorithm and also on when building the GEM. First, while varying
the iteration parameter, we get the same results of accuracy rate for the three
inference algorithms. So, this parameter has no influence on SSVM.
Then, we differentiate the inference method depending on the parameter C.
Then, we execute with three approaches: Quadratic Pseudo-Boolean Optimiza-
tion (QPBO), approximate maximum a posteriori (ad3) and belief propagation
as an iterative, local, message-passing algorithm for finding the maximum a pos-
teriori (max-product). We vary C from 4× 105 to 8× 105 randomly. We notice
that AR varies from 9% to 77%. The AR is increasing respectively with the
increase of C, from appreciatively 9% to 73% for QPBO, from 61% to 73% for
ad3 and from 63% to 67%. We conclude that QPBO is the best compared to the
other methods over the interval of C values in a way it always offers higher AR,
as shown in red plot in Fig. 2.

5.2 Impact of Structural and Topological Attributes

We want to evaluate the impact of attributes and structure on the performance
of our GEM approach. The graph structure is varying within the different struc-
tures defined in 4.1: unconnected graph, Void k-connected graph and Full k-
connected graph. The used attributes can be: geometrical attributes, structural
attributes and topological attributes. And, for the model can be CRF or Edge-
FeatureCRF in pystruct. And we use the inference unary for the case of uncon-
nected graph and QPBO for the rest cases.



VIII

Fig. 2: Impact of Inference methods.

Input Accuracy Rate(AR %)

Graph str./enriched geometrical att. structural att. topological att.

Full k-connected 59.1 71.4 76.22
Void k-connected 25.95 72.35 79.55
unconnected 16.66 15.34 32

Table 1: SVM Classification GREC DataSet.

Table 1 presents Accuracy Rates (AR) while learning more information, for
GREC dataset with best configuration of its parameters for each case of input
data. In fact, while varying the combination of parameters values, we get close
deviated ARs. That’s why, we addressed the problem to choose the best con-
figuration of parameters by quadratic polynomial regression function applied on
the ARs corresponding to a list of a fixed random combinations values. The ARs
have been obtained by employing Structural SVM classifier. Table 1 shows that
the structural attributes added to the graph structure offer better ARs than
geometrical attributes. And, the topological attributes provide better ARs than
the structural attributes. This is first because of the fact that the number of
attributes for each graph is increasing while adding the structural and topolog-
ical attributes. In addition to that, this is thanks to the fact that they provide
severely discerning information about the graph. The embedded graph devel-
opment clearly shows that our Embedding process gets a discriminatory power
from structural and topological attributes.
We compare our model with the FMGE [2] based on classification task. FMGE
solves the problem of noise sensitivity and topology reservation by Fuzzy Logic
and homogeneity information but our model solves it by learning structured
dependencies in a probabilistic model. Our method provides 79% as AR. And
FMGE presents 99.4%. Our current results are not sufficiently competitive with
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the results of FMGE. Future work will focus on improving them by providing
more training graphs.

5.3 Analysis of classification errors

We answer the question: Why do we have such classification errors? We will
analyze the false classified graphs for the best configuration of C ' 536 and the
input data are Full k-connected graphs with topological attributes. Table 2 gives
some statistic about classification errors. It summarizes the percentage of bad
classified graphs. Each ground truth class is confused with a wrong predicted
class with a percentage. This percentage is the number of assigned graphs to
this wrong predicted class. For the first example, the class 10 is confused with
class 1( Fig. 3). We notice that the graph that includes inside it unconnected
small parts are negligible. Other examples of misclassified graphs, have the same
problem. The GEM is neglecting the small parts outside connected to big parts.
For the second example, the edge in class 5 is of type arc. So here, our GEM
considers it as similar to an edge of type line. The second and third example are
showing the lost of structure. For other examples, the model shows invariance to
rotation. We categorize, somehow, the kind of errors as the following (see Fig. 3):

– (i) invariance to rotation;
– (ii) negligence of : (a)the small parts that are: inside connected, outside

connected, inside unconnected;(b) small length edges. The edge related to
too close 2 nodes is negligible comparing to the longest edge;

– (iii) confuse between geometrical attributes: for edges arc and line, for nodes
the coordinates (consider the two nodes as one) and sees two parallel edges
as one.

Fig. 3: Three miss-classified graphs examples. 1st row: (left)ground truth of class 10,
(middle)graph from class 10 labeled as class 1, (right)ground truth of class 1. 2cd

row: (left)ground truth of class 5, (middle)graph from class 5 labeled as class 18
,(right)ground truth of class 18. 3rd row: (left)ground truth of class 5, (middle)graph
of class 0 labeled as class 4, (right)ground truth of class 4.
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GT 10 5 0 1 4 2 10 16 7 15 18 1 3 17 18 1 4 8 11 15 21
Pred 1 18 4 15 0 8 6 0,21 1 0 2 6 7 2 8 7 20 6,9,16 2 6 0,6

AR(%) 41 33 29 25 20.8 16.6 12.5 8.3

Table 2: SVM Classification GREC DataSet with C ' 536, 934.

6 Conclusion

We’ve proposed a general scheme for building explicit GEM. This scheme is
demonstrated by learning the parameters of PGM based on AG structure and
its attributes. This vector is the proposed signature for the graph in a vectorial
space. Our GEM is taking advantage of the learning and computational strengths
of state-of-the-art of PGM learning and rich graph representation to be a new
tool for classification. Current results seem to be encouraging. To improve, we
need to provide more data for the training of our approach which can be a
problem in some cases. For future perspective we can focus on performing more
tests on comparing between structured learning methods.
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