|
Carlos David Martinez Hinarejos and 10 others. 2016. Context, multimodality, and user collaboration in handwritten text processing: the CoMUN-HaT project. 3rd IberSPEECH.
Abstract: Processing of handwritten documents is a task that is of wide interest for many
purposes, such as those related to preserve cultural heritage. Handwritten text recognition techniques have been successfully applied during the last decade to obtain transcriptions of handwritten documents, and keyword spotting techniques have been applied for searching specific terms in image collections of handwritten documents. However, results on transcription and indexing are far from perfect. In this framework, the use of new data sources arises as a new paradigm that will allow for a better transcription and indexing of handwritten documents. Three main different data sources could be considered: context of the document (style, writer, historical time, topics,. . . ), multimodal data (representations of the document in a different modality, such as the speech signal of the dictation of the text), and user feedback (corrections, amendments,. . . ). The CoMUN-HaT project aims at the integration of these different data sources into the transcription and indexing task for handwritten documents: the use of context derived from the analysis of the documents, how multimodality can aid the recognition process to obtain more accurate transcriptions (including transcription in a modern version of the language), and integration into a userin-the-loop assisted text transcription framework. This will be reflected in the construction of a transcription and indexing platform that can be used by both professional and nonprofessional users, contributing to crowd-sourcing activities to preserve cultural heritage and to obtain an accessible version of the involved corpus.
|
|
|
Joan Mas, Alicia Fornes and Josep Llados. 2016. An Interactive Transcription System of Census Records using Word-Spotting based Information Transfer. 12th IAPR Workshop on Document Analysis Systems.54–59.
Abstract: This paper presents a system to assist in the transcription of historical handwritten census records in a crowdsourcing platform. Census records have a tabular structured layout. They consist in a sequence of rows with information of homes ordered by street address. For each household snippet in the page, the list of family members is reported. The censuses are recorded in intervals of a few years and the information of individuals in each household is quite stable from a point in time to the next one. This redundancy is used to assist the transcriber, so the redundant information is transferred from the census already transcribed to the next one. Household records are aligned from one year to the next one using the knowledge of the ordering by street address. Given an already transcribed census, a query by string word spotting is applied. Thus, names from the census in time t are used as queries in the corresponding home record in time t+1. Since the search is constrained, the obtained precision-recall values are very high, with an important reduction in the transcription time. The proposed system has been tested in a real citizen-science experience where non expert users transcribe the census data of their home town.
|
|
|
Juan Ignacio Toledo, Alicia Fornes, Jordi Cucurull and Josep Llados. 2016. Election Tally Sheets Processing System. 12th IAPR Workshop on Document Analysis Systems.364–368.
Abstract: In paper based elections, manual tallies at polling station level produce myriads of documents. These documents share a common form-like structure and a reduced vocabulary worldwide. On the other hand, each tally sheet is filled by a different writer and on different countries, different scripts are used. We present a complete document analysis system for electoral tally sheet processing combining state of the art techniques with a new handwriting recognition subprocess based on unsupervised feature discovery with Variational Autoencoders and sequence classification with BLSTM neural networks. The whole system is designed to be script independent and allows a fast and reliable results consolidation process with reduced operational cost.
|
|
|
Anders Hast and Alicia Fornes. 2016. A Segmentation-free Handwritten Word Spotting Approach by Relaxed Feature Matching. 12th IAPR Workshop on Document Analysis Systems.150–155.
Abstract: The automatic recognition of historical handwritten documents is still considered challenging task. For this reason, word spotting emerges as a good alternative for making the information contained in these documents available to the user. Word spotting is defined as the task of retrieving all instances of the query word in a document collection, becoming a useful tool for information retrieval. In this paper we propose a segmentation-free word spotting approach able to deal with large document collections. Our method is inspired on feature matching algorithms that have been applied to image matching and retrieval. Since handwritten words have different shape, there is no exact transformation to be obtained. However, the sufficient degree of relaxation is achieved by using a Fourier based descriptor and an alternative approach to RANSAC called PUMA. The proposed approach is evaluated on historical marriage records, achieving promising results.
|
|
|
Marçal Rusiñol, J. Chazalon and Jean-Marc Ogier. 2016. Filtrage de descripteurs locaux pour l'amélioration de la détection de documents. Colloque International Francophone sur l'Écrit et le Document.
Abstract: In this paper we propose an effective method aimed at reducing the amount of local descriptors to be indexed in a document matching framework.In an off-line training stage, the matching between the model document and incoming images is computed retaining the local descriptors from the model that steadily produce good matches. We have evaluated this approach by using the ICDAR2015 SmartDOC dataset containing near 25000 images from documents to be captured by a mobile device. We have tested the performance of this filtering step by using ORB and SIFT local detectors and descriptors. The results show an important gain both in quality of the final matching as well as in time and space requirements.
Keywords: Local descriptors; mobile capture; document matching; keypoint selection
|
|
|
Dimosthenis Karatzas, V. Poulain d'Andecy and Marçal Rusiñol. 2016. Human-Document Interaction – a new frontier for document image analysis. 12th IAPR Workshop on Document Analysis Systems.369–374.
Abstract: All indications show that paper documents will not cede in favour of their digital counterparts, but will instead be used increasingly in conjunction with digital information. An open challenge is how to seamlessly link the physical with the digital – how to continue taking advantage of the important affordances of paper, without missing out on digital functionality. This paper
presents the authors’ experience with developing systems for Human-Document Interaction based on augmented document interfaces and examines new challenges and opportunities arising for the document image analysis field in this area. The system presented combines state of the art camera-based document
image analysis techniques with a range of complementary tech-nologies to offer fluid Human-Document Interaction. Both fixed and nomadic setups are discussed that have gone through user testing in real-life environments, and use cases are presented that span the spectrum from business to educational application
|
|
|
Q. Bao, Marçal Rusiñol, M.Coustaty, Muhammad Muzzamil Luqman, C.D. Tran and Jean-Marc Ogier. 2016. Delaunay triangulation-based features for Camera-based document image retrieval system. 12th IAPR Workshop on Document Analysis Systems.1–6.
Abstract: In this paper, we propose a new feature vector, named DElaunay TRIangulation-based Features (DETRIF), for real-time camera-based document image retrieval. DETRIF is computed based on the geometrical constraints from each pair of adjacency triangles in delaunay triangulation which is constructed from centroids of connected components. Besides, we employ a hashing-based indexing system in order to evaluate the performance of DETRIF and to compare it with other systems such as LLAH and SRIF. The experimentation is carried out on two datasets comprising of 400 heterogeneous-content complex linguistic map images (huge size, 9800 X 11768 pixels resolution)and 700 textual document images.
Keywords: Camera-based Document Image Retrieval; Delaunay Triangulation; Feature descriptors; Indexing
|
|
|
Y. Patel, Lluis Gomez, Marçal Rusiñol and Dimosthenis Karatzas. 2016. Dynamic Lexicon Generation for Natural Scene Images. 14th European Conference on Computer Vision Workshops.395–410.
Abstract: Many scene text understanding methods approach the endtoend recognition problem from a word-spotting perspective and take huge benet from using small per-image lexicons. Such customized lexicons are normally assumed as given and their source is rarely discussed.
In this paper we propose a method that generates contextualized lexicons
for scene images using only visual information. For this, we exploit
the correlation between visual and textual information in a dataset consisting
of images and textual content associated with them. Using the topic modeling framework to discover a set of latent topics in such a dataset allows us to re-rank a xed dictionary in a way that prioritizes the words that are more likely to appear in a given image. Moreover, we train a CNN that is able to reproduce those word rankings but using only the image raw pixels as input. We demonstrate that the quality of the automatically obtained custom lexicons is superior to a generic frequency-based baseline.
Keywords: scene text; photo OCR; scene understanding; lexicon generation; topic modeling; CNN
|
|
|
Fernando Vilariño and Dimosthenis Karatzas. 2015. The Library Living Lab. Open Living Lab Days.
|
|
|
Fernando Vilariño, Dimosthenis Karatzas, Marcos Catalan and Alberto Valcarcel. 2015. An horizon for the Public Library as a place for innovation and creativity. The Library Living Lab in Volpelleres. The White Book on Public Library Network from Diputació de Barcelona.
|
|