toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Y. Patel; Lluis Gomez; Marçal Rusiñol; Dimosthenis Karatzas edit   pdf
openurl 
  Title Dynamic Lexicon Generation for Natural Scene Images Type Conference Article
  Year 2016 Publication 14th European Conference on Computer Vision Workshops Abbreviated Journal  
  Volume Issue Pages 395-410  
  Keywords scene text; photo OCR; scene understanding; lexicon generation; topic modeling; CNN  
  Abstract Many scene text understanding methods approach the endtoend recognition problem from a word-spotting perspective and take huge bene t from using small per-image lexicons. Such customized lexicons are normally assumed as given and their source is rarely discussed.
In this paper we propose a method that generates contextualized lexicons
for scene images using only visual information. For this, we exploit
the correlation between visual and textual information in a dataset consisting
of images and textual content associated with them. Using the topic modeling framework to discover a set of latent topics in such a dataset allows us to re-rank a xed dictionary in a way that prioritizes the words that are more likely to appear in a given image. Moreover, we train a CNN that is able to reproduce those word rankings but using only the image raw pixels as input. We demonstrate that the quality of the automatically obtained custom lexicons is superior to a generic frequency-based baseline.
 
  Address Amsterdam; The Netherlands; October 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ECCVW  
  Notes DAG; 600.084 Approved no  
  Call Number Admin @ si @ PGR2016 Serial 2825  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: