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Abstract. Many scene text understanding methods approach the end-
to-end recognition problem from a word-spotting perspective and take
huge benefit from using small per-image lexicons. Such customized lexi-
cons are normally assumed as given and their source is rarely discussed.
In this paper we propose a method that generates contextualized lexi-
cons for scene images using only visual information. For this, we exploit
the correlation between visual and textual information in a dataset con-
sisting of images and textual content associated with them. Using the
topic modeling framework to discover a set of latent topics in such a
dataset allows us to re-rank a fixed dictionary in a way that prioritizes
the words that are more likely to appear in a given image. Moreover,
we train a CNN that is able to reproduce those word rankings but using
only the image raw pixels as input. We demonstrate that the quality
of the automatically obtained custom lexicons is superior to a generic
frequency-based baseline.

Keywords: scene text, photo OCR, scene understanding, lexicon gen-
eration, topic modeling, CNN

1 Introduction

Reading systems for text understanding in the wild have shown a remarkable
increase in performance over the past five years [1, 2]. However, the problem is
still far from being considered solved with the best reported methods achieving
end-to-end recognition performances of 87% in focused text scenarios [3, 4] and
53% in the more difficult problem of incidental text [5].

The best performing end-to-end scene text understanding methodologies ad-
dress the problem from a word spotting perspective and take a huge benefit
from using customized lexicons. The size and quality of these custom lexicons
has been shown to have a strong effect in the recognition performance [6].

The source of such per-image customized lexicons is rarely discussed. In most
academic settings such custom lexicons are artificially created and provided to
the algorithm as a form of predefined word queries. But, in real life scenarios
lexicons need to be dynamically constructed.
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In one of the few examples in literature, Wang et. al. [7] used Google’s “search
nearby” functionality to built custom lexicons of businesses that might appear
in Google Street View images. In the document analysis domain, different tech-
niques for adapting the language models to take into account the context of the
document have been used, such as language model adaptation [8] and full-book
recognition techniques [9]. Such approaches are nevertheless only feasible on rel-
atively large corpuses were word statistics can be effectively calculated and are
not applicable to scene images where text is scarce.

On the other hand, scene images contain rich visual information that could
provide the missing context to improve text detection and recognition results.
In the view of the authors, reading text in the wild calls for holistic scene under-
standing in a way where visual and textual cues are treated together providing
mutual feedback for each other’s interpretation.

In this paper, we take a first step in this direction, and we propose a method
that generates contextualized lexicons based on visual information. For this we
make the following contributions: first, we learn a topic model using Latent
Dirichlet Allocation (LDA) [10] using as a corpus textual information associated
with scene images combined with scene text. This topic model is suitable for
generating contextualized lexicons of scene text given image descriptions. Sub-
sequently, we train a deep CNN model, based on the topic model, that is capable
to produce on its output a probability distribution over the topics discovered by
the LDA analysis directly from the image input. This way our method is able
to generate contextualized lexicons for new (unseen) images directly from their
raw pixels, without the need of any associated textual content. Moreover, we
demonstrate that the quality of such automatically obtained custom lexicons
is superior to generic frequency-based lexicons in predicting the words that are
more likely to appear as scene text instances in a given image.

2 Related Work

End-to-end scene text recognition pipelines are usually based in a multi-stage
approach, first applying a text detection algorithm to the input image and then
recognizing the text present in the cropped bounding boxes provided by the
detector [11].

Scene text recognition from pre-segmented text has been approached in two
different conditions: using a small provided lexicon per image (also known as the
word spotting task), or performing unconstrained text recognition, i.e. allowing
the recognition of out-of-dictionary words.

Many of the existing text recognition methods [7, 6, 12–14] rely on individ-
ual character segmentation and recognition. After that, character candidates are
grouped into larger sequences (words and text lines) using spatial and lexicon-
based constraints. Such methods differ, apart from the features and classifiers
used for individual character classification, in their language models, and the
inference methods used to find the best character sequence, e.g. pictorial struc-
tures [7], Conditional Random Fields (CRF) [15], Viterbi decoding [6, 12, 13], or
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Beam Search [14]. Language models are usually based on a dictionary of the most
frequent words in a given language and a character n-gram (usually a bi-gram).
A much stronger language model, relying on large-scale data center infrastruc-
ture, is used in [14] combining a compact character-level 8-gram model and a
word-level 4-gram model.

State of the art language models for document-based OCR have demon-
strated good performance in scene text recognition when text instances can be
properly binarized [16, 17].

In the case of the word spotting and retrieval tasks it is also possible to make
use of holistic word recognizers that perform recognition without any explicit
character segmentation (Goel 2013, Almazan 2013, jaderberg2016reading).

Obviously, either language-model based approaches and holistic word recog-
nizers may benefit from using per-image customized lexicons: by reducing their
search space or (in the case of holistic recognizers) the number of possible class-
labels. As an example, table 1 shows end-to-end recognition performance in [6]
for different sizes of the per-image lexicon.

5 distractors 20 distractors 50 distractors 860 distractors Open vocabulary

F-score 76% 74% 72% 67% 38%

Table 1: Recognition performance drops when adding distraction words in the
lexicon [6].

However, having a small lexicon containing all the words that may appear
in a given image is not realistic in many cases. Even for methods using large
(frequency based) lexicons (e.g. the 90k word dictionary used in [4]), it is not
possible to recognize out-of-dictionary words such as telephone numbers, prices,
url’s, email addresses, or to some extent product brands. Notice that in the
last edition of the ICDAR Robust Reading Competition [2] out-of-dictionary
words are not included in the customized dictionaries provided for end-to-end
recognition, as it is not realistic that such queries would be available in a real-life
scenario.

An interesting method for reducing an initial large lexicon to a small image-
specific lexicon is proposed in [18]. Since having a large lexicon poses a problem
for CRF based methods because pairwise potentials become too generic, they
propose a lexicon reduction process that alternates between recomputing priors
and refining the lexicon.

Wang et. al. [7] propose the use of geo-localization information to built cus-
tom lexicons of businesses that might appear in Google Street View images.
This multimodal approach to generate contextualized lexicons from GPS data
clearly helps in recognition of out-of-dictionary words that are strongly corre-
lated with the location from which an image is taken, e.g. street names, touristic
attractions, business front stores, etc.
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In this paper we propose a method that generates contextualized lexicons
based only on visual information. The main intuition of our method is that vi-
sual information may provide in some cases a valuable cue for text recognition
algorithms: there are some words for which occurrence in a natural scene image
correlates directly with objects appearing in the image or with the scene category
itself. For example, if there is a telephone booth in the image the word “tele-
phone” has a large probability of appearance, while if the image is a mountain
landscape the “telephone” word is less likely to appear.

Evidence of this correlation between visual and textual information in natural
scene images has been recently reported by Movshovitz et al. in [19]. A Deep
Convolutional Neural Network trained for fine-grained classification of storefront
street view images implicitly learns to read, i.e. to use textual information, when
needed, despite it has been trained without any annotated text or language
models. The network, by learning the correct representation for the task at hand,
learned that some words are correlated with specific types of businesses, up to a
point in which if the text in correctly classified images is removed the net loses
classification confidence about their correct class. Moreover, the network is able
to produce relevant responses when presented with a synthetic image containing
only textual information (a word) that relates with a specific business.

On a totally different application but also in relation with exploiting the
correlation between visual and textual information, Feng et al. [20] proposes a
method that uses the topic modeling framework for generating automatic image
annotations and text illustration. They presented a probabilistic model based on
the assumption that images and their co-occurring textual data are generated
by mixtures of latent topics.

A topic model [21, 10] is a type of statistical model for discovering the abstract
”topics” that occur in a collection of text documents. Topic modeling has been
applied successfully in many text-analysis tasks such as document modeling,
document classification, semantic visualization / organization, and collaborative
filtering. But they also have applications in Computer Vision research. They
have been used for unsupervised image classification by Li et al. [22] when Bag-
of-Visual-Words was a dominant method for image classification. Nowadays they
are a common tool for automatic image annotation methods.

In this paper we present a method that generates contextualized lexicons
based on visual information. We use a similar approach to [20] in topic models
to exploit correlation between visual and textual information. But distinctly
to [20] we do not aim at generating annotations of the image, but instead the
words that are more likely to appear in the image as scene text instances.

Our method is also related with the work of Zhang et al. [23] in which we
use Latent Dirichlet Allocation (LDA) [10] within the topic modeling framework
to supervise the training of a deep neural network (DNN), so that DNN can
approximate the LDA inference. An idea that is motivated by the transfer learn-
ing approach of [24]. However, in our method we train a deep CNN that takes
images as input instead of a text Bag-of-Words as in [23].
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3 Method

The underlying idea of our lexicon generation method is that the topic modeling
statistical framework can be used to predict a ranking of the most probable words
that may appear in a given image. For this we propose a three-fold method: First,
we learn a LDA topic model on a text corpus associated with the image dataset.
Second, we train a deep CNN model to generate LDA’s topic-probabilities di-
rectly from the image pixels. Third, we use the generated topic-probabilities,
either from the LDA model (using textual information ) or from the CNN (using
image pixels), along with the word-probabilities from the learned LDA model to
re-rank the words of a given dictionary. Figure 1 shows a diagram representation
of the overall framework.

Fig. 1: We learn a LDA topic model on a text corpus associated with scene
images. Then we train a deep CNN model to generate the probabilities over
latent topics directly from image pixel information.

The training samples in our framework are composed by a couple of visual
information (an image) and some associated textual information (e.g. a set of
image captions and/or the annotations of words that appear in the image),
see Figure 2 (a). Our model assumes that the textual information describe the
content of the image either directly or indirectly and hence can be used to
generate contextualized lexicons for natural images.

In the next section we explain how we learn the LDA topic model to discover
latent topics from training data by using only the textual information. Then in
section 3.2 we show how it is possible to train a deep CNN model to predict
the same probability distributions over topics as the LDA model but using only
the image pixels (visual information) as input. Finally, in section 3.3 we explain
how using the topic probabilities we can generate word rankings, i.e. a per-image
ranked lexicon, for new (unseen) images.

3.1 Learning the LDA topic model using Textual Information

Our method assumes that the textual information associated with the images in
our dataset is generated by a mixture of latent topics. Similar to [20], we propose



6 Patel, Y., and Gomez, L., and Rusiñol, M., and Karatzas, D.

(a) (b)

(c) (d)

Fig. 2: (a) Our training samples consist in a couple of an image and some as-
sociated textual content. (b) Using a topic model we can represent the textual
information as a probability distribution over topics P (topic | text). (c) Training
samples for our CNN use those probability values as labels. (d) The CNN takes
an image as input and produces on its output a probability distribution over
topics P (topic | image).

the use of Latent Dirichlet Allocation [10] for discovering the latent topics in the
dataset’s text corpus, and thus to represent the textual information associated
with a given image as a probability distribution over the set of discovered topics.

As presented in [10], LDA is a generative statistical model of a corpus (a set
of text documents) where each document can be viewed as a mixture of various
topics, and each topic is characterized by a probability distribution over words.
LDA can be represented as a three level hierarchical Bayesian model. Given a
text corpus consisting of M documents and a dictionary with N words, Blei et
al. define the generative process [10] for a document d as follows :

– Choose θ ∼ Dir(α).
– For each of the N words wn:
• Choose a topic zn ∼Multinomial(θ).
• Choose a word wn from p(wn | zn, β), a multinomial probability condi-

tioned on the topic zn.
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where θ is the mixing proportion and is drawn from a Dirichlet prior with param-
eter α. As [10] suggests, α and β are assumed to be sampled once in the process
of generating a corpus. This way the documents are represented as topic proba-
bilities z1:K (being K the number of topics) and word probabilities over topics.
The learned LDA model has two sets of parameters, the topic probabilities given
documents P (z1:K | d) and the word probabilities given topics P (w | z1:K). This
way any new (unseen) document can be represented in terms of a probability
distribution over topics of the learned LDA model by projecting it in the topic
space.

Notice that in our framework a document corresponds to the textual infor-
mation associated to an image (e.g. image captions and scene text annotations).
Thus, the text corpus is the set of all textual information (documents) in the
whole dataset. By learning the LDA topic model using this corpus we discover
a set of latent topics in our dataset, and we can represent the textual informa-
tion associated to a given image as a probability distribution over those topics
p(topic|text) as shown in Figure 2 (b).

3.2 Training a CNN to predict probability distributions over LDA’s
topics

Once we have the LDA topic model, we want to train a deep CNN model to
predict the same probability distributions over topics as the LDA model does
for textual information, but using only the raw pixels of new unseen images.

For this we can generate a set of training (and validation) samples as follows:
given an image from the training set we represent its corresponding textual infor-
mation (captions) as probability values over the LDA’s topics. These probability
values are used as labels for the given image as shown in Figure 2 (c).

This way we obtain a set of M training (and validation) examples of the
form {(x1, y1), ..., (xM , yM )} such that xi is an image and yi is the probability
distribution over topics obtained by projecting its associated textual information
into the LDA topic space.

Using this training set we train a deep CNN to predict the probability distri-
bution yi for unseen images, see Figure 2 (d), directly from the image pixels. In
fact, we use a transfer learning approach here in order to shortcut the training
process by fine-tuning the well known Inception [25] deep CNN model. Details
on the training procedure are given in section 4.2.

3.3 Using topic models for generating word ranks

Once the LDA topic model is learned as explained in section-3.1, we can represent
the textual information corresponding to an unobserved image as probability
distribution over the topics of LDA model P (topic | text), which is done by
projecting the textual information to the topic-space. Since the contribution of
each word to each topic, P (word | topic) was pre-computed when we learned the
LDA model, we can calculate the probability of occurrence for each word in the
dictionary P (word | text) as follows:
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P (word | text) =
∑

i=1:K

(P (word | topici)P (topici | text)) (1)

Similarly, once the deep CNN is trained as explained in section-3.2, we can
obtain the probability distribution over topics for an unseen image P (topic |
image) as the output of the CNN when feeding the image pixels on its input.
Again, since the word-probability for each topic which P (word | topic) is known
from the corresponding LDA model, which we used to supervise the training
of deep CNN’s training, we can calculate the probability of occurrence of each
word in the dictionary P (word | image) as follows :

P (word | image) =
∑

i=1:K

(P (word | topici)P (topici | image)) (2)

Using the obtained probability distributions over words (i.e. P (word | text)),
or P (word | image)) we are able to rank a given dictionary in order to prioritize
the words that have more chances to appear in a given image.

In the following section we show how the the word rankings obtained from
both approaches are very similar, which demonstrates the capability of the deep
CNN to generate topic probabilities directly from the image pixels. Moreover,
the rankings generated this way prove to be better that a frequency-based word
ranking in predicting which are the expected scene text instances (words) to be
found in a given image.

4 Experiments and Results

In this section we present the experimental evaluation of the proposed method
on its ability to generate lexicons that can be used to improve the performance of
systems for reading text in natural scene images. First, we present the datasets
used for training and evaluation in section 4.1. Then, in section 4.2, we provide
the implementation details of our experiments. In section 4.3, we analyze the
performance of the word rankings obtained by representing image captions as a
mixture of LDA topics as detailed in section 3.3. Finally in section 4.4, we show
the performance of the word ranking obtained with our CNN network trained
for predicting topic probabilities.

4.1 Datasets

In our experiments we make use of two standard datasets, namely the MS-
COCO [26] and the COCO-Text [27] datasets.

The MS-COCO is a large scale dataset providing task-specific annotations
for object detection, segmentation, and image captioning. The dataset consists
of 2.5 million labeled object instances among 80 categories in 328K images of
complex everyday scenes. Images are annotated with multiple object instances
and with 5 captions per image.
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COCO-Text is a dataset for text detection and recognition in natural scene
images that is based on the MS-COCO dataset. The images in this dataset were
not taken with text in mind and thus it contains a broad variety of text instances.
The dataset consists of 63,686 images, 173,589 text instances (words) and 3-fine
grained text attributes. The dataset is divided in 43,686 training images and
20,000 validation images.

COCO-Text images are a subset of MS-COCO images, thus for our exper-
iments we use the ground truth information of both datasets: image captions
from MS-COCO and text instances (word transcriptions) from COCO-Text.

Since both the training and validation images of COCO-Text are a subset of
the MS-COCO training set, we have done the following partition of the data:
for training purposes we use the training and validation sets of MS-COCO but
removing the images that are part of the validation set in COCO-Text. For val-
idation purpose we use the validation set of COCO-Text. This way our training
set consists of 103287 images and our validation set of 20000 images.

Apart of the MS-COCO and COCO-Text datasets we have used the entire
english-wikipedia text, consisting of around 4 million text documents, for com-
puting the word-frequency based lexicon used as a Baseline for word-rankings
evaluation.

4.2 Implementation Details

In our experiments involving topic modeling we have used the gensim [28] Python
library for learning and inferring the LDA model. We have learned multiple LDA
models with a varying number of topics and have compared word ranking results
as shown in section 4.3.

On the other hand, we have used the TensorFlow [29] framework for fine-
tuning of the Inception v3 model [25]. We have trained the final layer of the
net from scratch, accommodating it to the size of our topic modeling task, and
leaving the rest of the net untouched. We used the cross entropy loss function
and Gradient Descent optimizer with a fixed learning rate of 0.01 and a batch
size of 100 for 100k iterations.

4.3 LDA word rankings from image captions

In this section we evaluate the performance of the different word rankings ob-
tained with our method on predicting text instances (words) for COCO-Text
validation images. The setup of the experiment is as follows:
Corpus: We learned the LDA topic model using two different corpuses: (1) we
use 63686 documents made using the word annotations from both the train and
validation images of COCO-Text and their corresponding captions (from MS-
COCO); (2) we do the same but using only the 43686 images in the train set of
COCO-Text and their corresponding captions (from MS-COCO).
Dictionary: We do experiments with two different dictionaries: (1) The list of
33563 unique annotated text instances (words) in the COCO-Text dataset; and
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(2) a generic dictionary of approximately 88172 words used in [4], but removing
stop words thus giving rise to a dictionary of 88036 words.

Word-rankings using LDA: For each image, the words of the dictionary are
ranked by obtaining the word probabilities as mentioned in section 3.3.

Baseline ranking: Dictionary words are ranked according to their frequency
of occurrences. Frequency of occurrence of dictionary words is computed on
wikipedia-english corpus.

Given a fixed dictionary we are interested in word rankings that are able to
prioritize the words that are more likely to appear in a given image as scene
text instances. Thus, we propose the following procedure to evaluate and com-
pare different word rankings: for every word ranking we count the percentage of
COCO-Text ground truth (validation) instances that are found among the top-
N words of the re-ranked dictionary. This way we can plot curves illustrating
the number of COCO-Text instances found in different word lists (lexicons) that
correspond to certain top percentages of the ranked dictionary. The larger the
area under those curves the better is a given ranking.

Figure 3 evaluate our method for a varying number of topics of the LDA
model, and compare their performance with the baseline frequency-based rank-
ing using the above mentioned text corpuses and dictionaries. The x-axis in the
plots represents percentage of words of the re-ranked dictionary. The y-axis rep-
resents percentage of instances of the validation set of COCO-Text dataset in
the top-N percent of the re-ranked dictionary.

(a) Corpus(1) and Dictionary(1) (b) Corpus(2) and Dictionary(1)

(c) Corpus(1) and Dictionary(2) (d) Corpus(2) and Dictionary(2)

Fig. 3: Word ranking performance comparison.
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Notice that we analyze our method only for the COCO-Text word instances
that are present in the dictionary, this is why using 100% of dictionary words
we always reach 100% of COCO-Text instances.

As can be appreciated the number of topics in the LDA topic model is an
important parameter of the method. The best performance for our automati-
cally generated rankings are found for the 30 topics model. In such a case the
performance of the LDA based rankings is superior to the baseline in all the
experiments. This demonstrates that the topic modeling analysis we propose is
able to predict the occurrence of words as scene text instances much better than
a frequency-based dictionary.

Figure 4 shows the performance comparison of the rankings generated with
the 30 topics LDA model in both dictionaries. Obviously using the textual con-
tent associated with validation images, in Corpus(1), for learning the LDA topic
model provides an extra boost to the method’s performance. Still the word rank-
ings provided by the LDA model learned only from training data, Corpus(2),
clearly outperform the baseline ranking.

(a) Dictionary(1) (b) Dictionary(2)

Fig. 4: Word ranking performance comparison by using Corpus(1) and Corpus(2)
with each dictionaries.

4.4 CNN word rankings

In this experiment we evaluate the performance of the deep CNN network trained
with the procedure detailed in sections 3.2 and 4.2. Figure 5 shows the perfor-
mance comparison of the word rankings obtained by the LDA model using 30
topics as in the previous section, and the word rankings obtained with the CNN
as explained in section 3.3. It is important to notice here that for training the
CNN the train images’ labels are generated from the LDA model learned only
with Corpus(2). This is, our CNN model has never seen validation data (neither
images or textual content) in a direct or indirect way.

As can be seen the CNN is able to produce word rankings with almost the
same performance as projecting the images’ captions in the LDA space, but using
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(a) Dictionary(1) (b) Dictionary(2)

Fig. 5: Word ranking performance comparison of LDA model and deep CNN
with 30 topics for Dictionaries (1) and (2).

only the image raw pixels as input. Using the CNN for predicting the probability
distribution over 30 topics for a given image takes takes 54ms.

Figure 6 shows the cross entropy loss of the CNN during the training process,
up to 100k iterations. We also show the top-1 topic classification accuracy (i.e.
as when we evaluate a classification task) because it’s efficient and gives us a
rough estimation on how the network is performing at every iteration. Thus, for
visualization we calculate accuracy by looking only at the most important topic
in ground-truth labels and in the CNN predictions.

Once the CNN model is trained we analyze its performance more precisely by
looking at the top-N most important topics, defined as the set of top-N topics for
which the sum of their probabilities reaches a certain threshold. Figure 6 shows
the CNN precision at N (P@N) calculated this way for the train and validation
sets. Notice that N might change for each image.

As can be appreciated in the table the CNN model is able to approximate
the learned topic model consistently in both training and validation sets. While
the obtained precision at N are far from a perfect model, we can see that in
average the CNN is able to predict the top-2 topics pretty well in nearly 70%

Probability Avg. N Train P@N Val. P@N

0.4 1.1 67.35% 66.61%
0.5 1.2 69.26% 68.59%
0.6 1.4 70.64% 70.06%
0.7 1.7 70.23% 69.78%
0.8 2 67.92% 67.56%
0.9 2.4 62.72% 62.17%

Fig. 6: Cross entropy loss and top-1 classification accuracy during the CNN train-
ing process up to 100k iterations (left). CNN model train and validation precision
at N for different probabilities.
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of the images. Moreover, since as shown in Figure 5 the performance of the
word rankings obtained directly from the topic model and the CNN are almost
identical, we can conclude that these values are only an estimator of the CNN
real performance. In other words, the word rankings produces by the CNN can
be as good as the ones using the LDA topic models even if the CNN prediction
is not 100% accurate.

Figure 7 shows qualitative results in which it can be appreciated the effec-
tiveness of the proposed method to produce word rankings that prioritize the
text instances annotated in different sample images. Figure 8 shows some un-
successful cases.

Fig. 7: Qualitative successful results of generated word rankings.

Images in Figures 7 and 8 have been selected from the validation set in order
to show a diversity of cases in which the proposed method produces particularly
interesting results that can be potentially leveraged by end-to-end reading sys-
tems. For example, for the bottom-right image in Figure 7 the top ranked word in
the the 33K words dictionary(1) is “TENNIS”, a word instance that is partially
occluded in the image and whose recognition would be very difficult without the
context provided by the scene.

5 Conclusion

In this paper we have presented a method that generates contextualized per-
image lexicons based on visual information. This way we take a first step towards
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Fig. 8: Qualitative unsuccessful results of generated word rankings. Word in-
stances without any semantic correlation with the visual information in the
scene tend to be low ranked.

the use of the rich visual information contained in scene images that could pro-
vide the missing context to improve text detection and recognition results.

We have shown how in large scale datasets consisting in images and associated
textual information, like image captions and scene text transcriptions, the topic
modeling statistical framework can be used to leverage the correlation between
visual and textual information in order to predict the words that are more likely
to appear in the image as scene text instances. Moreover, we have shown that is
possible to train a deep CNN model to reproduce those topic model based word
rankings but using only an image as input.

Our experiments demonstrate that the quality of the automatically obtained
custom lexicons is superior to a generic frequency based baseline, and thus can
be used to improve scene text recognition methods. Future work will be devoted
to integrate the proposed method in an end-to-end scene text reading system.

As a result of the work presented in this paper we have developed a cross
API, which is made publicly available3, to get captions from MS-COCO and
corresponding word annotations from COCO-Text.
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