|
Oriol Vicente, Alicia Fornes and Ramon Valdes. 2016. The Digital Humanities Network of the UABCie: a smart structure of research and social transference for the digital humanities. Digital Humanities Centres: Experiences and Perspectives.
|
|
|
Veronica Romero, Alicia Fornes, Enrique Vidal and Joan Andreu Sanchez. 2016. Using the MGGI Methodology for Category-based Language Modeling in Handwritten Marriage Licenses Books. 15th international conference on Frontiers in Handwriting Recognition.
Abstract: Handwritten marriage licenses books have been used for centuries by ecclesiastical and secular institutions to register marriages. The information contained in these historical documents is useful for demography studies and
genealogical research, among others. Despite the generally simple structure of the text in these documents, automatic transcription and semantic information extraction is difficult due to the distinct and evolutionary vocabulary, which is composed mainly of proper names that change along the time. In previous
works we studied the use of category-based language models to both improve the automatic transcription accuracy and make easier the extraction of semantic information. Here we analyze the main causes of the semantic errors observed in previous results and apply a Grammatical Inference technique known as MGGI to improve the semantic accuracy of the language model obtained. Using this language model, full handwritten text recognition experiments have been carried out, with results supporting the interest of the proposed approach.
|
|
|
Hana Jarraya, Muhammad Muzzamil Luqman and Jean-Yves Ramel. 2017. Improving Fuzzy Multilevel Graph Embedding Technique by Employing Topological Node Features: An Application to Graphics Recognition. In B. Lamiroy and R Dueire Lins, eds. Graphics Recognition. Current Trends and Challenges. Springer. (LNCS.)
|
|
|
Anjan Dutta, Josep Llados, Horst Bunke and Umapada Pal. 2018. Product graph-based higher order contextual similarities for inexact subgraph matching. PR, 76, 596–611.
Abstract: Many algorithms formulate graph matching as an optimization of an objective function of pairwise quantification of nodes and edges of two graphs to be matched. Pairwise measurements usually consider local attributes but disregard contextual information involved in graph structures. We address this issue by proposing contextual similarities between pairs of nodes. This is done by considering the tensor product graph (TPG) of two graphs to be matched, where each node is an ordered pair of nodes of the operand graphs. Contextual similarities between a pair of nodes are computed by accumulating weighted walks (normalized pairwise similarities) terminating at the corresponding paired node in TPG. Once the contextual similarities are obtained, we formulate subgraph matching as a node and edge selection problem in TPG. We use contextual similarities to construct an objective function and optimize it with a linear programming approach. Since random walk formulation through TPG takes into account higher order information, it is not a surprise that we obtain more reliable similarities and better discrimination among the nodes and edges. Experimental results shown on synthetic as well as real benchmarks illustrate that higher order contextual similarities increase discriminating power and allow one to find approximate solutions to the subgraph matching problem.
|
|
|
Thanh Ha Do, Salvatore Tabbone and Oriol Ramos Terrades. 2016. Sparse representation over learned dictionary for symbol recognition. SP, 125, 36–47.
Abstract: In this paper we propose an original sparse vector model for symbol retrieval task. More specically, we apply the K-SVD algorithm for learning a visual dictionary based on symbol descriptors locally computed around interest points. Results on benchmark datasets show that the obtained sparse representation is competitive related to state-of-the-art methods. Moreover, our sparse representation is invariant to rotation and scale transforms and also robust to degraded images and distorted symbols. Thereby, the learned visual dictionary is able to represent instances of unseen classes of symbols.
Keywords: Symbol Recognition; Sparse Representation; Learned Dictionary; Shape Context; Interest Points
|
|
|
Hana Jarraya, Oriol Ramos Terrades and Josep Llados. 2017. Graph Embedding through Probabilistic Graphical Model applied to Symbolic Graphs. 8th Iberian Conference on Pattern Recognition and Image Analysis.
Abstract: We propose a new Graph Embedding (GEM) method that takes advantages of structural pattern representation. It models an Attributed Graph (AG) as a Probabilistic Graphical Model (PGM). Then, it learns the parameters of this PGM presented by a vector. This vector is a signature of AG in a lower dimensional vectorial space. We apply Structured Support Vector Machines (SSVM) to process classification task. As first tentative, results on the GREC dataset are encouraging enough to go further on this direction.
Keywords: Attributed Graph; Probabilistic Graphical Model; Graph Embedding; Structured Support Vector Machines
|
|
|
Lasse Martensson, Anders Hast and Alicia Fornes. 2017. Word Spotting as a Tool for Scribal Attribution. 2nd Conference of the association of Digital Humanities in the Nordic Countries.87–89.
|
|
|
Pau Riba, Alicia Fornes and Josep Llados. 2017. Towards the Alignment of Handwritten Music Scores. In Bart Lamiroy and R Dueire Lins, eds. International Workshop on Graphics Recognition. GREC 2015.Graphic Recognition. Current Trends and Challenges.103–116. (LNCS.)
Abstract: It is very common to nd dierent versions of the same music work in archives of Opera Theaters. These dierences correspond to modications and annotations from the musicians. From the musicologist point of view, these variations are very interesting and deserve study.
This paper explores the alignment of music scores as a tool for automatically detecting the passages that contain such dierences. Given the diculties in the recognition of handwritten music scores, our goal is to align the music scores and at the same time, avoid the recognition of music elements as much as possible. After removing the sta lines, braces and ties, the bar lines are detected. Then, the bar units are described as a whole using the Blurred Shape Model. The bar units alignment is performed by using Dynamic Time Warping. The analysis of the alignment path is used to detect the variations in the music scores. The method has been evaluated on a subset of the CVC-MUSCIMA dataset, showing encouraging results.
Keywords: Optical Music Recognition; Handwritten Music Scores; Dynamic Time Warping alignment
|
|
|
Thanh Ha Do, Salvatore Tabbone and Oriol Ramos Terrades. 2016. Spotting Symbol over Graphical Documents Via Sparsity in Visual Vocabulary. Recent Trends in Image Processing and Pattern Recognition.
|
|
|
Debora Gil and 7 others. 2017. Classification of Confocal Endomicroscopy Patterns for Diagnosis of Lung Cancer. 6th Workshop on Clinical Image-based Procedures: Translational Research in Medical Imaging.151–159. (LNCS.)
Abstract: Confocal Laser Endomicroscopy (CLE) is an emerging imaging technique that allows the in-vivo acquisition of cell patterns of potentially malignant lesions. Such patterns could discriminate between inflammatory and neoplastic lesions and, thus, serve as a first in-vivo biopsy to discard cases that do not actually require a cell biopsy.
The goal of this work is to explore whether CLE images obtained during videobronchoscopy contain enough visual information to discriminate between benign and malign peripheral lesions for lung cancer diagnosis. To do so, we have performed a pilot comparative study with 12 patients (6 adenocarcinoma and 6 benign-inflammatory) using 2 different methods for CLE pattern analysis: visual analysis by 3 experts and a novel methodology that uses graph methods to find patterns in pre-trained feature spaces. Our preliminary results indicate that although visual analysis can only achieve a 60.2% of accuracy, the accuracy of the proposed unsupervised image pattern classification raises to 84.6%.
We conclude that CLE images visual information allow in-vivo detection of neoplastic lesions and graph structural analysis applied to deep-learning feature spaces can achieve competitive results.
|
|