|
Ali Furkan Biten, Lluis Gomez and Dimosthenis Karatzas. 2022. Let there be a clock on the beach: Reducing Object Hallucination in Image Captioning. Winter Conference on Applications of Computer Vision.1381–1390.
Abstract: Explaining an image with missing or non-existent objects is known as object bias (hallucination) in image captioning. This behaviour is quite common in the state-of-the-art captioning models which is not desirable by humans. To decrease the object hallucination in captioning, we propose three simple yet efficient training augmentation method for sentences which requires no new training data or increase
in the model size. By extensive analysis, we show that the proposed methods can significantly diminish our models’ object bias on hallucination metrics. Moreover, we experimentally demonstrate that our methods decrease the dependency on the visual features. All of our code, configuration files and model weights are available online.
Keywords: Measurement; Training; Visualization; Analytical models; Computer vision; Computational modeling; Training data
|
|
|
Josep Llados, Dimosthenis Karatzas, Joan Mas and Gemma Sanchez. 2008. A Generic Architecture for the Conversion of Document Collections into Semantically Annotated Digital Archives.
Keywords: Median Graph, Graph Embedding, Graph Matching, Structural Pattern Recognition
|
|
|
Miquel Ferrer, Dimosthenis Karatzas, Ernest Valveny, I. Bardaji and Horst Bunke. 2011. A Generic Framework for Median Graph Computation based on a Recursive Embedding Approach. CVIU, 115(7), 919–928.
Abstract: The median graph has been shown to be a good choice to obtain a represen- tative of a set of graphs. However, its computation is a complex problem. Recently, graph embedding into vector spaces has been proposed to obtain approximations of the median graph. The problem with such an approach is how to go from a point in the vector space back to a graph in the graph space. The main contribution of this paper is the generalization of this previ- ous method, proposing a generic recursive procedure that permits to recover the graph corresponding to a point in the vector space, introducing only the amount of approximation inherent to the use of graph matching algorithms. In order to evaluate the proposed method, we compare it with the set me- dian and with the other state-of-the-art embedding-based methods for the median graph computation. The experiments are carried out using four dif- ferent databases (one semi-artificial and three containing real-world data). Results show that with the proposed approach we can obtain better medi- ans, in terms of the sum of distances to the training graphs, than with the previous existing methods.
Keywords: Median Graph, Graph Embedding, Graph Matching, Structural Pattern Recognition
|
|
|
Miquel Ferrer, Ernest Valveny and F. Serratosa. 2009. Median Graphs: A Genetic Approach based on New Theoretical Properties. PR, 42(9), 2003–2012.
Abstract: Given a set of graphs, the median graph has been theoretically presented as a useful concept to infer a representative of the set. However, the computation of the median graph is a highly complex task and its practical application has been very limited up to now. In this work we present two major contributions. On one side, and from a theoretical point of view, we show new theoretical properties of the median graph. On the other side, using these new properties, we present a new approximate algorithm based on the genetic search, that improves the computation of the median graph. Finally, we perform a set of experiments on real data, where none of the existing algorithms for the median graph computation could be applied up to now due to their computational complexity. With these results, we show how the concept of the median graph can be used in real applications and leaves the box of the only-theoretical concepts, demonstrating, from a practical point of view, that can be a useful tool to represent a set of graphs.
Keywords: Median graph; Genetic search; Maximum common subgraph; Graph matching; Structural pattern recognition
|
|
|
Marçal Rusiñol, J. Chazalon and Jean-Marc Ogier. 2014. Normalisation et validation d'images de documents capturées en mobilité. Colloque International Francophone sur l'Écrit et le Document.109–124.
Abstract: Mobile document image acquisition integrates many distortions which must be corrected or detected on the device, before the document becomes unavailable or paying data transmission fees. In this paper, we propose a system to correct perspective and illumination issues, and estimate the sharpness of the image for OCR recognition. The correction step relies on fast and accurate border detection followed by illumination normalization. Its evaluation on a private dataset shows a clear improvement on OCR accuracy. The quality assessment
step relies on a combination of focus measures. Its evaluation on a public dataset shows that this simple method compares well to state of the art, learning-based methods which cannot be embedded on a mobile, and outperforms metric-based methods.
Keywords: mobile document image acquisition; perspective correction; illumination correction; quality assessment; focus measure; OCR accuracy prediction
|
|
|
Rahat Khan, Joost Van de Weijer, Dimosthenis Karatzas and Damien Muselet. 2013. Towards multispectral data acquisition with hand-held devices. 20th IEEE International Conference on Image Processing.2053–2057.
Abstract: We propose a method to acquire multispectral data with handheld devices with front-mounted RGB cameras. We propose to use the display of the device as an illuminant while the camera captures images illuminated by the red, green and
blue primaries of the display. Three illuminants and three response functions of the camera lead to nine response values which are used for reflectance estimation. Results are promising and show that the accuracy of the spectral reconstruction improves in the range from 30-40% over the spectral
reconstruction based on a single illuminant. Furthermore, we propose to compute sensor-illuminant aware linear basis by discarding the part of the reflectances that falls in the sensorilluminant null-space. We show experimentally that optimizing reflectance estimation on these new basis functions decreases
the RMSE significantly over basis functions that are independent to sensor-illuminant. We conclude that, multispectral data acquisition is potentially possible with consumer hand-held devices such as tablets, mobiles, and laptops, opening up applications which are currently considered to be unrealistic.
Keywords: Multispectral; mobile devices; color measurements
|
|
|
Alicia Fornes, Anjan Dutta, Albert Gordo and Josep Llados. 2012. CVC-MUSCIMA: A Ground-Truth of Handwritten Music Score Images for Writer Identification and Staff Removal. IJDAR, 15(3), 243–251.
Abstract: 0,405JCR
The analysis of music scores has been an active research field in the last decades. However, there are no publicly available databases of handwritten music scores for the research community. In this paper we present the CVC-MUSCIMA database and ground-truth of handwritten music score images. The dataset consists of 1,000 music sheets written by 50 different musicians. It has been especially designed for writer identification and staff removal tasks. In addition to the description of the dataset, ground-truth, partitioning and evaluation metrics, we also provide some base-line results for easing the comparison between different approaches.
Keywords: Music scores; Handwritten documents; Writer identification; Staff removal; Performance evaluation; Graphics recognition; Ground truths
|
|
|
Giuseppe De Gregorio and 6 others. 2022. A Few Shot Multi-representation Approach for N-Gram Spotting in Historical Manuscripts. Frontiers in Handwriting Recognition. International Conference on Frontiers in Handwriting Recognition (ICFHR2022).3–12. (LNCS.)
Abstract: Despite recent advances in automatic text recognition, the performance remains moderate when it comes to historical manuscripts. This is mainly because of the scarcity of available labelled data to train the data-hungry Handwritten Text Recognition (HTR) models. The Keyword Spotting System (KWS) provides a valid alternative to HTR due to the reduction in error rate, but it is usually limited to a closed reference vocabulary. In this paper, we propose a few-shot learning paradigm for spotting sequences of a few characters (N-gram) that requires a small amount of labelled training data. We exhibit that recognition of important n-grams could reduce the system’s dependency on vocabulary. In this case, an out-of-vocabulary (OOV) word in an input handwritten line image could be a sequence of n-grams that belong to the lexicon. An extensive experimental evaluation of our proposed multi-representation approach was carried out on a subset of Bentham’s historical manuscript collections to obtain some really promising results in this direction.
Keywords: N-gram spotting; Few-shot learning; Multimodal understanding; Historical handwritten collections
|
|
|
Manuel Carbonell, Mauricio Villegas, Alicia Fornes and Josep Llados. 2018. Joint Recognition of Handwritten Text and Named Entities with a Neural End-to-end Model. 13th IAPR International Workshop on Document Analysis Systems.399–404.
Abstract: When extracting information from handwritten documents, text transcription and named entity recognition are usually faced as separate subsequent tasks. This has the disadvantage that errors in the first module affect heavily the
performance of the second module. In this work we propose to do both tasks jointly, using a single neural network with a common architecture used for plain text recognition. Experimentally, the work has been tested on a collection of historical marriage records. Results of experiments are presented to show the effect on the performance for different
configurations: different ways of encoding the information, doing or not transfer learning and processing at text line or multi-line region level. The results are comparable to state of the art reported in the ICDAR 2017 Information Extraction competition, even though the proposed technique does not use any dictionaries, language modeling or post processing.
Keywords: Named entity recognition; Handwritten Text Recognition; neural networks
|
|
|
Asma Bensalah, Alicia Fornes, Cristina Carmona_Duarte and Josep Llados. 2022. Easing Automatic Neurorehabilitation via Classification and Smoothness Analysis. Intertwining Graphonomics with Human Movements. 20th International Conference of the International Graphonomics Society, IGS 2022.336–348. (LNCS.)
Abstract: Assessing the quality of movements for post-stroke patients during the rehabilitation phase is vital given that there is no standard stroke rehabilitation plan for all the patients. In fact, it depends basically on the patient’s functional independence and its progress along the rehabilitation sessions. To tackle this challenge and make neurorehabilitation more agile, we propose an automatic assessment pipeline that starts by recognising patients’ movements by means of a shallow deep learning architecture, then measuring the movement quality using jerk measure and related measures. A particularity of this work is that the dataset used is clinically relevant, since it represents movements inspired from Fugl-Meyer a well common upper-limb clinical stroke assessment scale for stroke patients. We show that it is possible to detect the contrast between healthy and patients movements in terms of smoothness, besides achieving conclusions about the patients’ progress during the rehabilitation sessions that correspond to the clinicians’ findings about each case.
Keywords: Neurorehabilitation; Upper-lim; Movement classification; Movement smoothness; Deep learning; Jerk
|
|