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Abstract. Despite recent advances in automatic text recognition, the
performance remains moderate when it comes to historical manuscripts.
This is mainly because of the scarcity of available labelled data to train
the data-hungry Handwritten Text Recognition (HTR) models. The Key-
word Spotting System (KWS) provides a valid alternative to HTR due to
the reduction in error rate, but it is usually limited to a closed reference
vocabulary. In this paper, we propose a few-shot learning paradigm for
spotting sequences of a few characters (N-gram) that requires a small
amount of labelled training data. We exhibit that recognition of impor-
tant n-grams could reduce the system’s dependency on vocabulary. In
this case, an out-of-vocabulary (OOV) word in an input handwritten
line image could be a sequence of n-grams that belong to the lexicon. An
extensive experimental evaluation of our proposed multi-representation
approach was carried out on a subset of Bentham’s historical manuscript
collections to obtain some really promising results in this direction.

Keywords: N-gram Spotting · Few-shot learning · Multimodal under-
standing · Historical Handwritten Collections

1 Introduction

Historical document digitization is essential for preserving and maintaining the
integrity of these documents’ records. Handwriting recognition is a central task
in facilitating different services related to historical manuscripts (e.g., search-
ing, indexing, storing, etc.). In this context, handwritten historical documents
processing is considered a challenging problem because images often suffer from
degradation as a result of smears, artifacts, pen strokes, show-through, stains,
bleed-through effects, and uneven illumination [3]. A further obstacle is the writ-
ing style variability related to documents’ writers living over different time pe-
riods [8]. Moreover, most of these records have unique and complex structured
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layout patterns, which make them difficult to handle [18]. This makes the usual
recognition-based techniques for document processing (like OCR and HTR) not
directly applicable to historical handwritten documents. The goal of an HTR
system is to correctly map an input text image into a machine-encoded format
at the word or character level. However, when writing is cursive, separation and
recognition of characters is even more difficult [9]. Alternatively, the word-level
prediction could be performed with greater accuracy in numerous cases. Hence,
the KWS technique was introduced as a surrogate to recognition-based methods
for word retrieval.

KWS can be defined as the task of finding all the instances of a keyword in a
document image without explicitly recognizing it [31]. This approach makes the
task more flexible and realizable, albeit the case when automatic transcription is
impossible. Hence this technique is successful for documents of historical interest.
The best performance of the systems mentioned above is achieved by lexicon-
based systems [18]. In contrast, the major drawback is their inability to correctly
recognize words that are not lexicon elements [21] (OOV words). This is a major
constraint when building a scalable retrieval system, as obtaining labelled data
is resource expensive and sometimes impossible in the case of historical docu-
ments. The handwriting process can be considered a complex combination of
motor and cognitive skills. As any intricate motor skill, it is acquired through
the two learning principles: repetition and memorization. A neural scheme for
motor learning has been proposed in [19], where the authors state that sen-
sory information is processed in the brain and appropriate motor commands are
generated to execute the desired movement. During the learning phase of these
movements, constant repetition enables the definition of motor automatisms
that are subsequently activated when the same movement has to be performed
again. Following the same approach to handwriting, we can presume that the
handwriting learning process sets out an arrangement of automated movements
corresponding to the best-learned writing motor primitives. The set of primitives
depends on the writer’s most familiar and best-learned sign sequence. This leads
to the hypothesis that during the handwriting learning phase, an individual de-
velops automated motor sequences to write the more frequent short sequences of
characters, referred to as n-grams. Next, localizing these n-grams within a word
could help with word-level recognition [22]. Thus, the ability to identify parts of
a word could ease the recognition of the OOV words in a classical HTR system.
Figure 1 shows the effect of N-gram spotting on an OOV word. It can be seen
how it is possible to partially recognise the word by focusing on the detection of
some of its n-grams. These insights led us to develop an N-gram spotting system
capable of recognizing partial sequences of words within a handwritten line of
text. On the other hand, current HTR models require large training sets. Never-
theless, finding historical documents together with manually labeled and aligned
transcriptions is quite rare. Accordingly, a” few-shot” learning paradigm [36] can
be introduced and explored to train a recognition model. This kind of scenario
allows the model to adapt to the limited training data provided. Following the
ideas proposed in [34], we can train a network to learn a similarity function
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between a handwritten text image query and a support N-gram image. Thus,
this helps create a small training set composed of the most frequent n-grams
extracted from available data collections. Later, we can detect n-grams inside
handwritten documents of a test set in order to recognize text word images.

Fig. 1: Illustration of the few shot N-gram spotting task: Given an OOV
word text image as input, our model gives an almost correct recognition.

The main contributions of this work are summarized as follows:

– We propose a few-shot N-gram spotting paradigm to deal with handwritten
historical collections that have limited amount of transcription;

– We explore and investigate the potential of the proposed N-gram spotting
solution in KWS scenario of predicting OOV word samples in handwritten
text images;

– Correspondingly, a novel multi-representation fusion strategy of feature em-
bedding attributes has been proposed for this task, to establish a tough-to-
beat baseline.

The rest of the paper is organised as follows: Section 2 explains the related
work, Section 3 presents the architecture of the proposed method, while Section 4
reports the experimental results. Finally, Section 5 presents the conclusions and
future work.

2 Related Work

Keyword Spotting. KWS was introduced to bridge the gap between digi-
tal and historical documents since conventional visual recognition systems can
hardly process them. In the classical approach, it is assumed that the text is al-
ready segmented into word candidates, and images of words are used as queries,
referred to as Query-by-Example (QbE) in the literature. Thus the problem can
be traced back to the definition of a distance measure between the different
images of a single word [24]. Alternatively, segmentation-free systems do not
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provide any word-level segmentation, and the system searches within a line of
text or on a whole page for regions similar to the example query [5, 6, 15]. If
the search query is fed to the system in the form of a string of characters and
not as an image, it has been defined as Query-by-String (QbS). In this scenario,
the system must be able to compare strings with images of candidate regions.
An interesting solution for this task is to use an embedding to project both
the query string and the document image features into a shared space where
it is possible to define a distance function. In this common space, it is, there-
fore, possible to execute queries starting from both a string and an image [2].
A powerful embedding function should be able to represent a word with its
Pyramidal Histogram Of Characters (PHOC) attributes [1]. Using the PHOC
representation, we could represent a generic string or a generic image word as a
fixed-length vector by calculating the histogram of the characters of the input,
concatenating the histogram of the first half and the second half, and so on until
a certain depth is reached. Once the embedding space is defined, the search can
be performed by learning a distance metric between the PHOC representations
and then using the measure to spot keywords [32]. One set of KWS techniques
that is particularly relevant in the case of historical documents is the lexicon-
based approaches [23]. These systems are based on a list of predefined keywords
that can be searched; hence any keyword not belonging to that list gives a null
score. This stimulates the need for a robust KWS system that could provide
a solution in the case of OOV keywords. In historical document analysis, the
available data for training the recognition models is often very limited. In KWS,
expanding the system lexicon and building large lexicons require large data sets.
One method to mitigate the problem of finding OOV words is to define a simi-
larity metric between generic words. In that way, it is possible to approximate
the retrieval values of OOV words [23]. Another approach is to use language
models at the n-gram level, where the obtained predictions from the model are
entrusted with the task of recognizing proposed words that are not in the lexi-
con [16]. The performances of the proposed solutions do not exceed those of the
lexicon-based systems, making the spotting of OOV words still an open problem.

Few Shot Learning for Handwriting Recognition. Few shot learning set-
ting is emerging in machine learning as an efficient parading to supervise the pro-
cess with a reduced number of samples. One of the first papers that attempted
to address the KWS problem with a few-shot approach was proposed by Howe
et al. [11]. Authors claimed their KWS system can perform the training phase
with only a few labelled data. Since then, few-shot learning has shown a grow-
ing interest, and new solutions have been presented for handwriting analysis.
Solutions ranged from generative systems capable of producing characters [37]
to character recognition systems in different languages [28, 35]. Also, synthetic
generation has been further expanded to generation of text-line images [13] and
layouts in whole-page documents [7]. One interesting solution was proposed by
Souibgui et al. [30]. The authors proposed a few-shot approach to search for a
set of symbols within a handwritten line of an encrypted document. All above
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mentioned and other works demonstrate that few-shot can be fruitfully applied
for handwriting analysis.

3 Methodology

Inspired by the work in [30], we propose a few-shot learning-based model to tackle
the N-gram spotting task in historical document collections. Given a handwritten
input text image as a query and some of the most frequent N-gram examples
as support, the model is trained to predict the position of the support N-grams
within the query line image.

3.1 The Base Architecture

The proposed architecture is based on a faster R-CNN detector [25]. Then, it is
adapted to a Siamese architecture by setting the goal of obtaining a similarity
score between the images of the supporting N-grams and the boxes found within
the line of handwritten text. Figure 2 shows the base architecture of the proposed

Fig. 2: Base Architecture. A single backbone is used in feature extraction
of the query and support images. The backbones for the query image and the
support image share weights, as predicted by the Siamese model.

system. Here, the supports are images of n-grams belonging to a given class c,
and we form the model to detect all objects of class c in a query image of a
handwritten line of text Q. The first stage is a feature extraction phase where the
CNN network extracts features from the text images. It must be highlighted that
the network used to extract the features of both the query and the supporting
images share the same structure and the same weights, as required for a Siamese
architecture. the choice of a feature extraction backbone is not fixed, and by
changing the choice of the feature extraction network, a different search modality
can be applied which allows performing the spotting in a search space each time
different.

The region proposal phase follows the feature extraction stage. In this phase,
the feature map of both the query image and the supporting n-gram image are
fed to an attention module and, further, to a region proposal network (RPN).
After this phase, ROI-pooling is introduced on top of the regions proposed by
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the RPN and the feature map of the supporting n-gram image. The feature maps
are then combined and then fed to a classification and regression module. This
module consists of a collection of fully connected layers divided into two heads.
The first is a classification head, and the second is a regression head. The output
of the classifier uses a sigmoid activation function. The sigmoid decides whether
the proposed region belongs to the class of the supporting image (1) or not (0).
In parallel, the regression model generates the coordinates of the bounding boxes
within the handwritten line image with respect to the classified image parts.

3.2 The Multi-Modal Architecture

The base architecture can be constructed in by using different types of back-
bones for the feature extraction phase, so that different search modalities can
be combined with the aim to fuse the results obtained in different feature spaces
to obtain an improved spotting performance. In this section, we propose an ar-
chitecture that combines two different search modalities as shown in Figure 3,
to which we refer to from now on as multi-modal architecture. The two inde-
pendent branches work concurrently, obtaining the two solutions Y1 and Y2 by
using the backbones BB1 and BB2 respectively. At the end the two solutions
are combined by a weighted concatenation as shown in eq. 1.

Y = (w1 · Y1)||(w2 · Y2) (1)

Through the selected weights of each backbone w1 and w2, it is possible to
define the relative importance of solution Y1 in comparison to Y2.

Fig. 3: The Multi-Modal Architecture: Two independent solutions from dif-
ferent search modalities are fused.

In the final combined solution Y , a possibility would be that for the same
region of the handwritten query line image, the multi-modal system could pro-
pose multiple interpretations of the same N-gram as illustrated in Figure 4. In
this case, the similar solutions are fused into a new unique solution whose score
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is recomputed by first computing the gain and then adding it to obtain the final
score. When two overlapping solutions α1 and α2 belonging to the same N-gram
class are detected, they are fused together, computing a new score s as in eq. 2
defined by the maximum between the two scores s1 and s2 incremented by a
gain γ.

s = max(s1, s2) + γ (2)

where the additional gain γ is defined as:

γ = δ ·
(

1− |s1 − s2|
max(s1, s2)

)
(3)

Here in eq. 3, δ is the maximum increment step, and s1 and s2 are the scores
computed in the two solutions α1 and α2. Thus, the new score s is directly
proportional to the maximum score between s1 and s2 and to the difference
between the two scores. Consequently, the cases where both branches propose the
same interpretation with very high scores for the same text region are rewarded.
If the new score exceeds the maximum allowable score value (in our case s > 1),
the score of the recomputed solution is set equal to one, while the scores of all
other interpretations that overlap for the same range of the query image are
decreased by the excess value 1− s.

Fig. 4: An example of the combination of two similar solutions proposed
for the same text area: a) shows two proposal of the 3-gram ”the” with
two different scores; b) shows the result of the fusion. It results with a new
interpretation for the 3-gram ”the” whose score is higher than that of the initial
interpretations.

3.3 Multi-Modal Architecture with Early Fusion

The previous multi-modal architecture performs the same region proposal, clas-
sification, and regression problems twice in both branches, using two different
backbones before fusing the results at the end to obtain the final scores. Instead,
an early fusion strategy that uses one branch for region proposal and the other
branch for classification and regression could also be adopted. Thus, we present a
modification of the previous multi-modal architecture as shown in Figure. 5. The
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key objective is to separate the feature space for the region proposal problem
from the feature space for the classification and regression problem. Therefore,
the first branch is used for the region proposal phase. It computes the features
of the query line images and supporting n-grams used by the region proposal
block. Then, it identifies the possible regions of the text row that are candidates
for an instance of the supporting image N-gram. Afterward, the second branch
calculates the features used in the classification and regression phase, using the
regions proposed in the other branch.

Fig. 5: The Multi-Modal Architecture with Early Fusion: The architec-
ture uses different modalities for region proposal and classification and regres-
sion.

4 Experiments

4.1 Experimental Setup

Among the premises of this work, the most restrictive is related to the amount
of available training data. Indeed, our application scenario consists of very small
handwritten document collections. Thereby, we considered a subset of the well-
known Bentham Collection used in [26]. 20 pages were selected, 5 of which were
used as a training set. The entire transcription and examples of frequent reference
n-grams were extracted from this training set, obtaining a list of key n-grams
consisting of 116 classes, each populated by a number of items ranging from five
to seventy-six. The remaining 15 pages were used as a test set. All pages of the
dataset were pre-processed by concatenating a binarization step [27], a text line
segmentation, and lastly, a deslanting method [33].

Since limited training data is available, it may be useful to use different data
sets for pre-training. In our case, we have augmented the pre-training dataset
with two additional datasets. Additionally, we have created two synthetically
generated datasets that are much larger than our real data. To create the first
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synthetic dataset, we have chosen the Omniglot dataset [17]. Omniglot consists
of 1623 different characters handwritten by different scribes from 50 different
alphabets. There are 20 examples of each character in this dataset. We generated
2000 lines of text with 964 different symbols by randomly spacing the symbols in
the series with a high probability of symbol overlap. Next, for the second set of
synthetic training data, lines of handwritten text were instead generated using a
generative network capable of generating words from handwritten text [12, 14].
The network was trained on the IAM dataset [20] and then used to generate
random words (assembled into 2000 lines of text). In this case, it was possible
to use these lines to highlight the contained n-grams and to use these n-grams
as marked elements for the training set.

4.2 Evaluation Metrics

Fig. 6: Example of the result of the spotting on a query text line image:
the image highlights all the boxes detected in correspondence with each n-gram
reporting the scores associated with each box at the bottom.

As observed in the Figure 6, the system offers different interpretation op-
tions for each text area of the text line, each with a different similarity score
value between 0 and 1. However, the system obtains a single interpretation for
each class of n-grams for each text line area. This is due to the options merging
of the multi-modal architecture module described in Section 3.2. We address the
task as a retrieval problem. Thus, the system is formulated as a multiple item
recommendation system, with the peculiarity that the system cannot propose
multiple options belonging to the same class. On the other hand, our interest
lies in the fact that at least one of the top-k options proposed by the system is
the correct one; thus, the transcription of the N-gram has been correctly identi-
fied. We then propose a modification of the Precision and Recall at k metrics as
shown in eq. 4 and eq. 5 respectively.

p@k =
true relevant ngrams@k

retrieved ngrams
(4)

r@k =
true relevant ngrams@k

relevant ngrams
(5)
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In the aforementioned formulations, true relevant ngrams@k represents the
number of N-grams correctly detected given the top k options for each area
of the text line image, retrieved ngrams denotes the number of all n-grams
detected within the text line, while relevant ngrams is the number of n-grams
that make up the text line. It should be noted, however, that the system is not
able to recognise n-grams outside the list of n-grams used for the search in the
test phase but that it proposes an interpretation for all areas of the queried text
line in any case, even if it has a low score. Therefore, it is interesting to limit
the analysis to the n-grams that the system can actually recognise. We will refer
to these n-grams by the term in vocabulary. In addition, we use a recall met-
ric at k restricted to n-grams in the vocabulary, defined as in eq. 6 where the
relevant ngram InV oc term denotes the number of n-grams in the vocabulary
that occur in the handwritten text line image.

r@k InV oc =
true relevant ngrams@k

relevant ngrams InV oc
(6)

4.3 Results and Discussion

Selecting Base Architecture Backbones: We selected several model back-
bones to test the base architecture and evaluated their performance. We have
chosen to use two backbones related to two architectures that have performed
well on different computer vision tasks: VGG16 [29] and Resnet18 [10]. We have
also decided to test the PHOCnet [32] backbone as it is widely used in various
handwritten word spotting tasks. We compare our approach with the solution
presented in [30]. This work was designed to search for encrypted symbols in
a line of handwritten text using a few-shot approach. Although there is a dif-
ference in domains, the commonality between these two problems is that both
approaches have solutions based on a few-shot setting, and both solutions search
for a symbol within a line of handwritten text image (whether it is an encrypted
symbol or a Latin N-gram). Table 1 shows the results for a single branch ar-
chitecture with different backbones compared to the results obtained with the
model presented in [30]. The results are given for the cases k = 1 and k = 5 and
for the number of shots of 1, 3, and 5. The different systems have been trained
with the set of n-grams extracted from the Bentham collection training data,
while for the model [30], the training conditions that showed better performance
were chosen. We can infer from the table how the model performance changes
depending on the backbone network used for the feature extraction phase. As
outlined, the VGG16 network backbone in our base model achieves the best re-
sults.
The Significance of Pre-training: So far, the performance of the model

seems unsatisfactory in most cases. To achieve a better performance, a pre-
training phase is essential to be conducted using synthetic data. For this exper-
imentation, we tested two backbones: the VGG16 backbone because it showed
better performance compared to the architecture with the Resnet18 backbone,
while the PHOCnet backbone was chosen due to its relevance to the applica-
tion domain. Table 2 highlights the results and illustrates how the pre-training
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Table 1: Results for the base architecture evaluating different backbones (BB)
for feature extraction:

#shot p@1 r@1 r@1 InVoc p@5 r@5 r@5 InVoc

Souibgui et al. [30]
1 0.0325 0.0279 0.0557 0.0607 0.0513 0.1218
3 0.0269 0.0256 0.0598 0.0757 0.0717 0.1864
5 0.0122 0.0121 0.0348 0.0671 0.0641 0.1976

BBV GG16

1 0.0701 0.0373 0.0942 0.1747 0.0854 0.2114
3 0.0579 0.0339 0.0638 0.1947 0.1006 0.2302
5 0.0465 0.0274 0.0513 0.1980 0.1062 0.2732

BBRESNET18

1 0.0000 0.0000 0.0000 0.0533 0.0061 0.0150
3 0.0333 0.0042 0.0167 0.0333 0.0042 0.0167
5 0.0167 0.0026 0.0059 0.0333 0.0061 0.0150

BBPHOCnet

1 0.0000 0.0000 0.0000 0.0167 0.0048 0.0083
3 0.0310 0.0071 0.0392 0.0671 0.0153 0.0566
5 0.0111 0.0048 0.0083 0.0954 0.0233 0.0780

phase on synthetic data, followed by a fine-tuning phase on the real data, allows
the system to significantly improve its performance in all possible metrics. It
is worth mentioning that it was impossible to use the synthetic training data
generated from the Omniglot dataset with the PHOCnet network since a PHOC
representation of a word composed of symbols rather than letters is meaningless.
Comparison to existing SOTA methods: The model from Souibgui et
al. [30] has been pre-trained with a dataset generated from the Omniglot dataset.
For a fair comparison with our proposed approach, we have performed a fine-
tuning phase on the real data. As denoted in Table 2, the results obtained with
the model from Souibgui et al. [30] are comparable to the results of our model
with the VGG16 backbone and the synthetic Omniglot dataset for pre-training.
The model in [30] uses a VGG16 backbone for feature extraction, which could
explain the comparable results. It is also interesting to note that the proposed
system performs better in the case of k = 5 and when the number of shots is
high.
Effectiveness of Multi-Modal Architecture: In this section we evaluate the
model described in Section 3.2 using the two different backbones VGG16 and
PHOCnet, respectively pre-trained with the dataset generated from the Om-
niglot dataset and with the synthetically generated dataset containing n-grams.
The outcome of the model depends on the values assigned to the parameters w1

and w2 of the eq. 3. Next, we evaluated the model by varying the two weights
from the minimum value 0 to the maximum value 1 with a step size of 0.1 and
testing all the weighs combination by performing a grid search [4]. Fig. 7 shows
the results of the search, and it is clear that the best results are obtained when
combining the two different branches. Table 3 illustrates the best results for
each metric in case of 5-shot scenario. As an overall trend, the weighting of the
branch with VGG16 backbone is always greater than or equal to the weight-
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Table 2: Comparative results with the Single-Branch pre-trained model, the
Multi-modal model, and the Multi-modal model with Early Fusion:

#shot p@1 r@1 r@1 InVoc p@5 r@5 r@5 InVoc

Souibgui et al. [30] + finetuning
1 0.1613 0.1121 0.3408 0.3007 0.2042 0.6465
3 0.2088 0.1427 0.4391 0.3436 0.2301 0.6948
5 0.2241 0.1602 0.4703 0.3342 0.2364 0.7314

BBV GG16 + Omniglot
1 0.1823 0.1291 0.3376 0.3126 0.2171 0.6092
3 0.2060 0.1405 0.4279 0.3462 0.2349 0.7170
5 0.2216 0.1470 0.4436 0.3725 0.2450 0.7594

BBV GG16 + Synth
1 0.1555 0.0778 0.2298 0.2940 0.1511 0.4908

Single-Branch 3 0.1823 0.1036 0.3357 0.3019 0.1644 0.5346
5 0.1878 0.1117 0.3292 0.3336 0.1856 0.5832

BBPHOCnet + Synth
1 0.1084 0.0612 0.1669 0.2682 0.1543 0.4156
3 0.1369 0.0831 0.2105 0.2734 0.1638 0.4781
5 0.1333 0.0791 0.1976 0.2861 0.1700 0.4809

BBV GG16 + BBPHOCnet

1 0.2140 0.1424 0.4505 0.3437 0.2392 0.7195
Multi-modal 3 0.2045 0.1495 0.4783 0.3536 0.2519 0.7498

5 0.2303 0.1808 0.5582 0.3747 0.2588 0.7975

1 0.0596 0.0553 0.1563 0.1504 0.1470 0.4027
VGG16 ROI + PHOCnet class 3 0.0793 0.0832 0.2192 0.1552 0.1619 0.4199

Early-Fusion 5 0.0536 0.0582 0.1652 0.1715 0.1858 0.5105
Multi-modal 1 0.2346 0.1179 0.3514 0.3374 0.1738 0.5762

PHOCnet ROI + VGG16 class 3 0.2234 0.1312 0.4258 0.3783 0.2185 0.6925
5 0.2419 0.1392 0.4404 0.4088 0.2236 0.7043

ing of the branch with PHOCnet backbone, except in the case of r@5. Based
on the weights values, we can conclude that more discriminative feature spaces
should have greater importance for combination purposes, complementing our
intuition. Additionally, the performance of all indices is higher than the previous
performance with the single backbone model. This suggests that searching over
multiple feature spaces may contribute to better performance.
Early fusion strategy: As discussed in Section 3.3, it may be interesting to

Table 3: Best recorded results with relative weights.
Measure Max-Value w vgg16 w phoc

Precision@1 0.2303 0.7 0.5
Recall@1 0.1808 0.5 0.5
Recall@1 InVoc 0.5582 0.4 0.4
Precision@5 0.3747 0.5 0
Recall@5 0.2588 0.8 1.0
Recall@5 InVoc 0.7975 0.6 0.3

investigate the early fusion strategy during the multi-modal combination of the
two backbones. To this end, we have trained the model of Section 3.3 again us-
ing the two pretrained VGG16 and PHOCnet backbones, as in the case of the
previous section. The architecture has been first implemented with the VGG16
backbone for the region proposal phase and the PHOCnet backbone for the
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(a) (b) (c)

(d) (e) (f)

Fig. 7: Visualizing feature weights for Multi-modal Fusion. Variation of
the (a)Precision@1 (b)Recall@1 (c)Recall@1 InVoc (d)Precision@5 (e)Recall@5
(f)Recall@5 InVoc according to the fusion weights for visual and phoc features
in case of 5-shot scenario.

classification phase, then with the PHOCnet backbone for the region proposal
and the VGG16 for the classification. Table 2 presents information on the ob-
tained results. According to Table 2, the performance of the system decreases
compared to the best shots with the previous solutions in terms of recall but
increases in terms of precision. This entails that the two different strategies for
the fusion are better suited to different scenarios, depending on whether the goal
is to maximize recall rather than precision.

5 Conclusion

In this paper, we have presented a few-shot multi-representation model for N-
gram spotting for historical manuscripts. Based on experimental results, we have
demonstrated our approach’s adequacy and that it is possible to detect n-grams
of references within a line of handwritten text. We limited the analysis to some
of the available feature spaces, but the results showed that using more than one
representation can improve performance. In this direction, an exhaustive study
on the different representations available could be performed by analyzing in
detail different backbones architecture with different depths to understand the
impact on the model. The method does not limit the search for n-grams only
to the words that appear in the training pages, from which classical recognition
systems build their reference lexicons, but offers the possibility to recognise n-
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grams also in the OOV words that appear only in the test pages. In the future, we
will explore the possibility of extending the model with a ”word reconstruction”
module based on a language model that can reconstruct whole-word interpreta-
tions starting from the recognised n-grams to bring the focus of the problem back
to the most useful word-level. We will also explore the possibility of extending
the model to the page level in order to avoid the segmentation of handwritten
text line images.
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