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Abstract

Explaining an image with missing or non-existent objects
is known as object bias (hallucination) in image caption-
ing. This behaviour is quite common in the state-of-the-art
captioning models which is not desirable by humans. To
decrease the object hallucination in captioning, we propose
three simple yet efficient training augmentation method for
sentences which requires no new training data or increase
in the model size. By extensive analysis, we show that the
proposed methods can significantly diminish our models’
object bias on hallucination metrics. Moreover, we experi-
mentally demonstrate that our methods decrease the depen-
dency on the visual features. All of our code, configuration
files and model weights are available online'.

1. Introduction

Thomas Kuhn [24] stated that discoveries in anomalies
usually lead to new paradigms. Machine Learning (ML)
in its early days relied on hand-coded/crafted features (alas
simple, elegant ones are favored) to create models. How-
ever, there was an anomaly that performed better than hand
crafted features and it led to a paradigm shift called the Un-
reasonable Effectiveness of Data [16], where they simply
advised “to follow the data”. Following the data was only
the first step in the paradigm change, the second step was
the amount of data. The introduction of big datasets like
MSCOCO [26] and ImageNet [10] combined with the cur-
rent advent in compute has resulted deep learning achieving
significant feats [25]. Nevertheless, many works are pub-
lished regarding the various failure cases and shortcuts that
are exploited by deep models [14].

The shortcuts can be found especially in Vision and Lan-
guage tasks such as Image Captioning and Visual Question
Answering (VQA) in the form of object hallucination [33],
language prior [15], focusing on background [5], spurious
correlations [46], action bias [46], and gender bias [17].

https://github.com/furkanbiten/object-bias
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UD: A man on a beach with a surfboard

AoA: A man standing on a beach holding a frisbee
Ours (UD): A man standing on a beach near the ocean
Ours (AoA): A man standing on a beach with a clock

Figure 1: Standard approaches to image captioning are
known to hallucinate on objects that do co-occur frequently,
e.g. beach and frisbee or surfboard. Our method is capable
of reducing object bias by normalizing the co-occurrence
statistics, resulting in a reduction of hallucinated objects
and the correct prediction of lower probability ones.

Solving the problem of object bias in image captioning
is important for various reasons. First and foremost, de-
scribing an image while failing to correctly identify objects
is not desirable to humans [33]. This is especially true for
visually impaired people where they prefer correctness over
coverage [29] for obvious reasons. Secondly, even though
the results of the captioning models are pushed to the limit
in evaluation metrics, this does not translate to a decrease in
object bias/hallucination [33]. Finally, solving object hallu-
cination is crucial for our models’ generalization capabili-
ties, allowing them to adapt easier to unseen domains.

It is obvious that hallucination cannot be corrected by
collecting even more data from the same biased world. The
co-occurrence patterns will not change or they will be mag-
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nified. In other words, these biases do not seem to disappear
neither with scaling up the dataset and nor with the increase
in model size [14].

In this work, we demonstrate that it is possible to re-
duce the object bias without needing more data or increase
in the model size while not affecting the model’s computa-
tional complexity and performance. More specifically, we
tweak any existing captioning models by providing object
labels as an additional input and employ a simple yet effec-
tive sampling strategy which consist of artificially chang-
ing the objects in the captions, e.g. modifying the sentence
“a person is playing with a dog” to “a fork is playing with
a dog”. Along with a change in the sentence, in a corre-
sponding way we also replace the object labels provided to
the model.

The reason is simple and can be traced back to co-
occurrence statistics. By altering the co-occurrence statis-
tics of the objects, we lessen the models’ dependence on
language prior and visual features as can be seen in Fig-
ure 1. Our contributions in this work are as follows:

* A simple method that can be applied to any captioning
model to reduce object bias which requires no extra
training data or increase in the model parameters.

* We improve the results on the hallucination metric
CHAIR [33] while obtaining a boost over our baseline
models on image captioning evaluation metrics.

* We demonstrate that our technique works with two
commonly used loss functions, cross entropy and RE-
INFORCE [32] algorithm.

2. Related Work

Following the advances of the encoder-decoder frame-
work [8] with attention [4] in machine translation, auto-
matic image captioning took off using similar architec-
tures [39, 45]. The next advance in captioning came from
using a pretrained object detector as feature extractor with
two types of attention, top-down and bottom-up atten-
tion [3]. In parallel, it was demonstrated that training cap-
tioning models with the REINFORCE algorithm [42], op-
timizing the evaluation metrics directly, had benefits over
using cross-entropy loss [32]. More recently, with the pre-
sentation of Transformers [36], a new family of models [19]
achieved state-of-the-art results. Image captioning recently
shifted into new directions such as generating diverse de-
scriptions [38, 12, 44] by allowing both grounding and con-
trollability [9, 47, 7] while using various contextual infor-
mation [6, 35].

Nevertheless, despite the continuous improvement on
the classic captioning metrics, there are many biases ex-
ploited, that produce biases in the models. To compen-
sate for gender bias where the models are known to pre-

fer a certain gender over the other in specific settings, [17]
proposed to tweak the original cross-entropy loss with con-
fidence/appearance loss. Another bias in captioning is re-
lated to action bias where certain actions are preferred over
others described by [46] where they employ causality [31]
into the captioning models. More specifically, their pro-
posed method uses 4 layers LSTM with running expected
average on ConceptNet [27] concepts for each word pro-
duced in the caption, which it introduces a significant com-
putation overload. Similarly, [1] modifies the images with
generative models to reduce the effect of spurious correla-
tions in Visual Question Answering task.

[33] show that contemporary captioning models are
prone to object bias. Moreover, they describe that eval-
uation metrics merely measure the similarity between the
ground truth and produced caption, not capturing image rel-
evance. Consequently, they propose two metrics to quantify
the degree of hallucination of objects, namely CHAIRs and
CHAIRi. CHAIR metrics evaluates how much our mod-
els produced wrong object labels at sentence level (hence
CHAIRSs) and at object level (hence CHAIRIi). Surprisingly,
the object hallucination problem has not received the atten-
tion it deserves. In this work, we try to diminish object bias
without enlarging the model size or using extra data. We
do so following a simple strategy that can be used with any
model that accepts object detection features as inputs.

3. Methods

As mentioned previously, we try to reduce the object bias
that exists inherently in existing models. The main cause of
object bias is the systematic co-occurence of specific object
categories in images of our training datasets, we therefore
hypothesize that making the co-occurence statistics matrix
more uniform will make our models hallucinate less. Ac-
cordingly, we devise a series of data augmentation tech-
niques to achieve this goal.

3.1. A Small Tweak to Any Captioning Model

We would like to start off by giving a concise and gen-
eral introduction to models in image captioning. After the
introduction of top-down bottom-up attention [3], most of
existing models for image captioning utilize object-level vi-
sual features extracted from an object detection network.
More formally, given an image I, a set of bounding box
features V' = {vy,vs,...,v,} are obtained by passing it
through a pretrained object detector O, i.e. V. = O(I).
These features are combined with an attention mechanism
to be later fed into Language Models (L) to generate a sen-
tence S = {w1,wa, ..., wi} where most common variants
of £ are Transformers [36] and LSTM [18]. This formula-
tion can be seen more clearly on the left part of Figure 2.
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Figure 2: Most current models for image captioning utilize object-level visual features extracted from an object detection
network (left diagram). In this paper we propose a simple tweak that consists of providing also the object labels as input
(center diagram). The concatenation of label embeddings to visual features allows us to employ data augmentation techniques
on the object labels and model supervision (captions) to fix the object bias in our models (right diagram).

V = Att(V, h) "
P(wj), h = E(w]|V, w1, W2, ..., U}j_l)

Our tweak to the aforementioned formulation is to sim-
ply concatenate the object labels found in an image with
bounding box features (middle part of the Figure 2). More
formally, we extend the set of bounding box features from
VitoV = {v1,02, ..., 0, 11,12, ...,1;} where I; is the :*
embedded object label. After the concatenation, we replace
V with V and follow exactly the same training procedure
outlined in Equation (1).

Concatenation of label embeddings to visual features al-
lows us to employ our data augmentation techniques. Since
we use the labels as input to our models, we can directly al-
ter them as we see fit. In the following sections, we describe
the strategy behind the augmentation of labels.

3.2. Sentence Simplification

A first step to all our data augmentation methods is sen-
tence simplification. By sentence simplification we refer to
removing adjectives that are used in the captions for objects
in the scene. As an example, we would like to modify the
sentence “A small black cat is sitting on top of an old ta-
ble” into “A cat is sitting on top of a table.”. The reasons
are twofold, one of which is that there are adjectives that
can not hold true for every object, e.g. “small” and “black”
can be used for a cat but this will not be correct when cat
is artifically changed with another object such as elephant
or banana. Secondly, simplifying the sentence in this way
provides another variation of sentences, acting as type of a
regularizer for captioning models to exploit language prior
existing in the dataset.

To achieve this goal, we first analyze every caption with
a Part-Of-Speech (POS) and find all the noun phrases corre-
sponding to sentences. However, these noun phrases do not
necessarily have to refer to objects found in an image. That

is why, we make use of synonyms list for object classes that
exist in the dataset (e.g. 80 objects in MSCOCO) and filter
the noun phrases that include the object name or its syn-
onyms. As a final step, we replace the whole noun phrase
with the root of the phrase.

3.3. Augmentation of Sentences

After simplifying the sentences, we employ different
sampling strategies to pick which object to replace. More
formally, given a sentence containing objects o; and o;, we
sample object oy, to replace o; according to the distribution
P(o|o;). Now, we explain in detail which distributions we
use to augment the sentences.

3.3.1 Uniform Sampling

The choice of uniform sampling is inspired by our hypothe-
sis on creating a uniform object label co-occurrence matrix.
In its most simplest form, we make use of uniform distribu-
tion for sampling, where

P(og|oi) = P(ox) = 1/N. 2

In other words, every object has an equal probability to be
sampled where dataset statistics are disregarded. The next
two distribution takes into account the discarded dataset
statistics.

3.3.2 Inverse Multinomial Sampling

The most accessible statistics one can obtain regarding any
given dataset is the co-occurrence matrix M € RN*N
where M;; refers to the co-occurrence statistics of objects
o; and o; and NV is the number of objects. We define a new
distribution which considers dataset statistics called inverse
multinomial by making use of M where

1 i M,
P(og|o;) = —=— where M;;, =

_ 3
My, >k Mik @

1383



With inverse multinomial, we sample object o, if the oc-
curence is low with object 0;. On the other hand, if object
oy, and o; co-occurs frequently in the dataset, then the prob-
ability of selecting o will be quite low.

3.3.3 Updating Co-Occurence Matrix

Although inverse multinomial sampling increases the
chance of low frequency pairs to be sampled, it prevents
creating a new bias for low frequency pairs. To circumvent
the problem, we determine to keep track of the matrix M
and constantly update according to the sampled pair. More
formally, the distribution is defined as:

1 - M.
P(ok|o;) = —=— where M;; = L
Aﬂk ’ E:jﬂiﬁ (4)

M = My, + 1, M;; = M;; — 1

By keeping track of co-occurence statistics in training di-
minishes the prospect of models finding a shortcut as well
as allowing faster convergence to a uniform M.

4. Experiments
4.1. Dataset and Baseline Models

MSCOCO: [26]. We use the most commonly used cap-
tioning dataset, MSCOCO [26]. We follow the literature on
using the ‘Karpathy’ split [21]. The split contains 113,287
training images with 5 captions each and 5k images for val-
idation and testing.

Evualation Metrics: To evaluate caption quality, we re-
port the standard automatic evaluation metrics; CIDEr [37],
BLEU [30], METEOR [11], SPICE [2]. Moreover, we in-
clude the new metric called SPICE-U [4 1] which is a vari-
ant of SPICE where it rewards for uniqueness of sentences.
Finally, we provide the hallucination metrics CHAIRs [33]
and CHAIRI [33] for sentence and object level, respectively.
In CHAIR metrics, lower is better.

UpDown (UD): [3]. The bottom-up and top-down at-
tention model utilizes the salient image regions proposed
by object detector pretrained on VG [23] and then weight-
ing the regions by employing an attention mechanism cal-
culated according to Language Models’ hidden state.

AoA: [19]. The attention on attention model extends the
conventional Transformers [36] model by including another
attention to determine the relevance between attention re-
sults and queries. When we train with object labels given as
inputs, we refer those models as UD-L and AoA-L.

4.2. Implementation Details

All our models are implemented on top of publicly avail-
able code’. We use Adam [22] optimizer with batch size

’https://github.com/ruotianluo/self-critical.
pytorch

10 and learning rate 0.0002 and 0.0005 for UpDown [3]
and AoA [19], respectively. Both models are trained for 30
epochs and we kept the best models according to best score
on validation set on Cider-D [37]. We generate sentences
with no beam search and both models use visual features
provided by [3]. For embedding the object labels, we uti-
lize FastText [20].

We use both of the commonly used training losses em-
ployed by the literature, namely cross-entropy and REIN-
FORCE [32]. For every variant of our model, we randomly
choose to use original sentences or augmented sentences ac-
cording to flip of a coin as ground-truth. All the models
trained with our augmentation are fine-tuned to allow faster
convergence and to see if we can reduce the “learned” biases
of our models. Finally, we always use the ground truth ob-
ject labels as input to our models and use X101-FPN from
Detectron2 [43] library to obtain object labels for testing.
All the code, model weights and configuration file neces-
sary for the hyper-parameters will be released upon acccep-
tance.

4.3. Comparison to State of Art

We present the results of our models as well as the state-
of-the-art model results in 1. First and foremost, UD-VC
ad AoA-VC (row 1.1, 1.2) uses the features extracted from
state of the art object detector while concatenating with the
original features provided by UpDown [3], i.e. they use 2
FasterRCNN architecture in their model training. While
UD-DIC (row 1.3) uses 4 deep LSTMs [18] to find match-
ing between produced words and ConceptNet [27] labels.
Moreover, UD-MMI (1.4) and AoA-MMI (1.5) trains an
LSTM without any visual features to detect the common
and not unique sentences and later to be used at inference
time. From aforementioned models, we observe that beat-
ing state-of-the-art results or increase in the model size or
even using better features does not result in our models hal-
lucinating less.

Remark 1 Increase in the model size (parameters) or boost
in the image captioning metrics does not result in decrease
in CHAIR metrics.

Subvariant of this conclusion can be also seen in REIN-
FORCE [32] training. It is common practice in captioning
community to train the models first with cross entropy and
then with self-critical loss [32] on CIDER-D [37]. While
this training ensures a significant boost on the automatic
metrics especially on CIDER, it makes our models hallu-
cinate more (can be seen in row 1.7, 1.8, 1.11, 1.13 and
1.18).

Remark 1.1 Self-Critical training leads to increase in the
captioning metrics while making models hallucinate more.
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Table 1: Results of image captinoning models on Karpathy test split. * numbers are provided by [

] with beam search 5.

B-4: Bleu-4, M: Meteor, C: Cider, S: Spice, S: Spice-U, CHs: CHAIRs, CHi: CHAIRi, UD: UpDown, AoA: Attention on
Attention, Uni: Uniform Sampling, Inv: Inverse Multinomial Sampling, Occ: Co-occurence Updating. In CHAIR metrics,

lower is better.

‘ ‘ Cross Entropy Self Critical
‘ Model ‘B4T M1 Ct St CHs) CHil S-U?t B4t Mt Ct St CHs]| CHil] S-Ut
1.1| UD-VC [40] 39.5 29 130.5 - 10.3 6.5 - - - - - - - -
1.2] Ao0A-VC [40] 395 293 1316 - 8.8 5.5 - - - - - - - -
1.3] UD-DIC [46] 387 284 1282 219 10.2 6.7 - - - - - - - -
1.4| UD-MMI [41] | 22.77 28.84 10642 20.72 7.8 - 25.27 - - - - - - -
1.5] AcA-MMI [41] | 27.18 30.39 128.15 22.81 9.28 - 26.53 - - - - - - -
1.6| DiscCap[41] | 21.58 27.42 1109 2027 10.84 - 24.52 - - - - - - -
1.7| LRCN[13]* - 23.9 90.8 17.0 17.7 12.6 - - 235 930 169 177 12.9 -
1.8 FC [32]* - 24.9 95.8 17.9 15.4 11 - - 25 1039 184 144 10.1 -
1.9 Att2In [32]* - 25.8 102 18.9 10.8 7.9 - - 257 106.7 19 12.2 8.4 -
1.10 UD [3]* - 27.1 113.7 204 8.3 5.9 - - 277 1206 214 104 6.9 -
1.11 NBT [28]* - 262  105.1 19.4 7.4 5.4 - - - - - - - -
1.12|  GAN [34]* - 257 1004 187 10.7 7.7 - - - - - - - -
1.13 UD 332 269 1084  20.0 10.1 6.9 24.05 365 278 1215 213 119 7.7 23.85
1.14 UD-L 344 273 1127 20.7 6.4 4.1 24.68 377 28.6 1247 22.1 5.9 3.7 25.41
1.15| UD-L + Uni 342 272 1124 206 6.3 4.0 24.61 37.6 287 1252 223 5.8 3.7 25.54
1.16| UD-L + Inv 343 273 1126 207 6.2 4.0 24.05 37.8 28.7 1254 223 5.9 3.8 25.60
1.17| UD-L + Occ 339 270 1107 203 5.9 3.8 24.52 37.7 287 1252 222 5.8 3.7 25.58
1.18 AoA 337 274 1110 206 9.1 6.2 24.57 388 287 1272 224 9.6 6.1 24.68
1.19 AoA-L 331 270 1100 203 7.1 44 24.30 359 280 1196 21.7 7.8 4.8 24.81
1.20| AoA-L + Uni 341 272 1114 205 6.2 3.9 24.58 351 278 1177 214 7.3 4.5 24.58
1.21| AoA-L +Inv 343 273 1120 206 6.5 4.1 24.93 357 280 1192 21.8 7.5 4.6 2493
1.22| AoA-L + Occ 343 271 111.3 205 6.2 3.9 24.57 345 275 1160 21.1 7.0 4.3 24.20

The next point we would like to move to is regarding
our methods starting from 1.13. Simply by adding the ob-
ject labels as input we notice an improvement on CHAIR
metrics for both of the models. This progress can also be
observed on classic image captioning metrics for UpDown
model. Furthermore, we note that addition of labels also
reaches the reported numbers in 1.10 while significantly di-
minishing the object bias on both sentence and object level.
Finally, we see that this simple technique of concatenating
object labels and visual features already gives state-of-the-
art results in object hallucination by around 1 to 4%.

Remark 2 Merely concatenating the labels with visual fea-
tures results in the decline of hallucination of our models
while beating state-of-the-art models on CHAIR metrics.

Before we focus on our augmentation techniques, we
want to point out that reducing object hallucination from
10% to 6% is not an equivalent to reducing it from 6% to
2%. The reason is that there are 2 different elements affect-
ing the hallucination, one of which is the dataset bias which
what we are trying to solve and the other one is the noisy
and incorrect FasterRCNN features. From the next section,
we see that our methods upper bound is around 2-3%, sug-
gesting that the rest of the hallucination is mostly coming
from the visual features. That said, it can be seen that we

even better the results of row 1.14 and row 1.19 in compar-
ison to our proposed techniques by around 0.5 to 1%.

Remark 3 We demonstrate that our proposed techniques
can reduce the object bias on the same model architectures.

Furthermore, we remark that we always obtain the best
results on CHAIR metrics with the Co-Occurrence Updat-
ing technique although we usually obtain a decrease in the
other common metrics. We also see that Inverse Multino-
mial sampling results in the best performance in the classic
captioning metrics. Moreoever, Co-Occurence Updating al-
ways achieves the best CHAIR scores out of all the different
sampling.

Remark 3.1 Inverse Multinomial achieves the best scores
on standard captioning metrics while Co-Occurence updat-
ing performs the best on CHAIR metrics.

Finally, we report the recently introduced metric SPICE-
U [41] where it evaluates how unique and informative a cap-
tion is. We take interest in the said metric since our concern
was that proposed augmentation can make captioning mod-
els produce more repetitive or less informative captions be-
cause of the sentence simplification. As can be observed
from the 1, even in the cases where we have a drop on stan-
dard image captioning metrics, we still improve on SPICE-
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Table 2: Results on Karpathy Test split. The numbers are obtained by using ground truth object labels instead of using object

detector.
‘ Cross Entropy Self Critical
Model Aug | Bleu-4t METEOR{T CIDEr1 SPICET CHAIRs| CHAIRi| Bleu-4t METEOR{ CIDEr{ SPICE{ CHAIRs| CHAIRi
UD 34.6 274 112.9 20.8 4.5 2.8 37.9 28.7 1259 223 35 2.2
UuD U 34.6 274 113.4 20.8 4 2.5 38.0 28.9 126.2 22.5 3.7 2.3
UD M 345 274 114.0 20.9 39 24 38.0 28.8 126.4 22.5 3.9 24
UD Occ 34.0 27.1 111.6 20.5 3.6 2.2 38.0 28.8 126.4 22.5 35 2.1
AoA 334 27.2 111.4 20.5 4.4 2.7 36.2 28.3 121.3 22.0 43 2.6
AoA U 344 273 1125 20.7 2.7 1.6 355 28.0 119.2 21.7 3.9 23
AoA IM 34.6 274 1134 20.8 3.1 1.9 36.1 28.3 121.0 22.0 3.9 23
AoA  Occ 344 274 113.0 20.7 2.7 1.6 34.9 27.7 117.4 213 3.7 2.2

U. Inrow 1.14-1.17, we even have 2% improvement in self-
critical training. This is quite encouraging especially com-
pared to SOTA numbers on row 1.4-1.6 where we even beat
the numbers without the need of training an extra LSTM.

Remark 4 Our techniques can improve or at least stay
the same as the base model on producing informative and
unique captions.

4.4. What if we have perfect label extractor?

We try to figure out the upper bound for our techniques.
In other words, since it is known that object detectors are
far from providing the perfect labels, we test our methods
with the ground truth annotations of object labels to see the
full performance of our different methods, given in Table 2.
We use the same models provided in Table 1.

First conclusion is that we see an improvement on all
the metrics with the usage of ground truth. This is quite
expected since we have trained with the ground truth anno-
tations.

Remark S5 With the perfect object detector, we can improve
on all the metrics.

One important remark is that the gap between the mod-
els with labels and models trained with our augmentation is
much bigger. Particularly, for UpDown we see the gap be-
comes 0.9% and 0.6% while for AoA, it is 1.7%, 1.1% on
CHAIRs and CHAIRI, respectively. This suggests that our
proposed augmentation will reach even higher values with
the advances on object detector’s performance.

Remark 5.1 Our proposed methods can achieve higher
performance simply by obtaining more precise labels.

Finally, it can be appreciated that in all of the mod-
els whether trained with cross-entropy or self-critical, Co-
Occurrence Updating always accomplishes the best scores
on CHAIR metrics, confirming our hypothesis on creating a
uniform co-occurence matrix causing a decrease on object
bias.

Remark 5.2 By making the co-occurrence matrix uniform
causes our models to have the least object bias.

FRCNN Ground Truth
Vis Feat Labels | CHAIRs CHAIRi CHAIRs CHAIRi
UD-L v X 9.2 6.6 - -
UD-L + Uni v X 9.4 6.7
UD-L + Inv v X 9.2 6.6
UD-L + Occ v X 9.8 7.1 - -
UD-L X v 35.8 29.1 35.7 28.7
UD-L + Uni X v 26.1 18.8 24.7 17.3
UD-L + Inv X v 29.2 21 28 19.8
UD-L + Oce X v 20.2 13.6 17.1 11.2

Table 3: Results on Karpathy Test split. We either provide
to our models only visual features or object label embed-
dings.

4.5. Data augmentation effect on the models

Our next set of experiments is done to find out what is
the proposed augmentation provides to the model. To take a
stab at the problem, we decided to zero out either the visual
features or the object labels at inference time to see how
much importance they have on hallucination. Our numbers
can be seen in Table 3. Primarily, we appreciate that the re-
sults are much better when using visual features than when
using object labels. This is anticipated and can be thought
as taking away the “eyes” of the model. However, we iden-
tify that visual features holds more significance for UD-L
than the models trained with the augmentation (UD-L+Occ
and UD-L+Uni).

Remark 6 The proposed training leads to models to put
more emphasis on the labels while reducing the dependence
on visual features.

Moreover, it can be appreciated that our model trained
with Co-Occurence Updating puts less importance on the
visual features or utilizes it to a lesser degree than the other
models. This point is especially reinforced when we exam-
ine the zeroing out the visual features. We recognize that
models trained with our augmentations utilizes much more
the provided labels, in which from UD-L to UD-L+Occ,
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Figure 3: Bar plot on low frequency pairs. We provide all the models we trained with object detector labels and ground truth
labels. We select the sentences which contain objects pairs that has less than 200 co-occurrence.

there is a 15% improvement. Another evidence for the state-
ment is that in UD-L from object detection labels to ground
truth, there is simply 0.1%, 0.4% improvement. Further-
more, we can even see that this gap grows even more when
the ground truth is used as input to our models. We notice
that the same difference when used ground truth raises to
18% and 17% for CHAIRs and CHAIRI, respectively.

Remark 6.1 Co-Occurrence Updating exploits the labels
the most out of other 3 models.

4.6. Captioning with uncommon object pairs

To further investigate our proposed formulation, we pro-
vide Figure 3 for all of our models in 1.13- 1.22. In Fig-
ure 3, we calculated the CHAIRs (Figure 3a) and CHAIRI
(Figure 3b) for pairs of objects with low co-occurrence. For
this we filtered those images of the MSCOCO dataset with
pairs of objects with a co-occurrence lesser than 200. This
accounts for 23.6% of the MSCOCO test set. It can be
recognized that original models UD (1.13) and AoA (1.18)
have a much higher object bias on low frequency pairs than
the other ones, an increase around 2% for both models on
CHAIRs and 0.2%, 0.3% on CHAIRIi for UD and AoA. In
addition, we see much better numbers on UD-L and AoA-
L, so simple concatenation of labels lowers the object bias.
Additionally, with the utilization of perfect labels (orange
bars in Figure 3), we appreciate that we obtain even bet-
ter numbers on low frequency object pairs than the overall
numbers calculated in Table 2. This suggests that our pro-
posed augmentation can handle well on low frequency ob-
ject pairs whether trained with cross entropy or self-critical.

As well, we notice that the gap between the original
models and Co-Occurrence Updating is bigger on the low
frequency pairs. Therefore, our hypothesis on making co-
occurrence matrix as uniform as possible making object
bias lower holds valid.

4.7. Ablation Study
| SS CHAIRs [33] CHAIRI [33]
UD-L+Uni | X 6.3 4.1
UD-L+Inv | X 6.3 4
UD-L + Occ | X 6.5 4.2
UD-L+Uni | v 6.3 4
UD-L+Inv | v/ 6.2 4
UD-L +Occ | vV 5.9 3.8

Table 4: Ablation results on sentence simplification.

Our final experimentation is on the analysis of sentence
simplification. To see if the suggested formulation for sen-
tence simplification has any effect on object bias, we de-
cided to run UpDown model with and without sentence sim-
plification. Our results can be found in Table 4.

As can be appreciated from the Table 4, sentence sim-
plification does not seem to have a lot of effect on Uniform
and Inverse Multinomial sampling. Even though we always
get better results on using sentence simplification, we only
obtain 0.1% which can be accounted for randomness.

However, sentence simplification has a significant ef-
fect on Co-Occurrence Updating. Our conjecture regarding
this phenomena is that since Co-Occurrence Updating se-
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UD: A dog is sitting in the
grass near a lake

AoA: A dog running in a
field near a body of water

Ours (UD): A horse is sit-
ting in the grass near a lake

Ours (AoA): A horse run-
ning in a field near a body
of water

UD: A man is jumping a
street on a skateboard

AoA: A man is in the air
on a skateboard

Ours (UD): A man is doing
a trick on a traffic light

Ours (AoA): A man is
jumping the air on a traffic

light

UD: A young child hold-
ing a remote control in his
hand

AoA: A baby holding a re-
mote control in its hand

Ours (UD): A baby is hold-
ing a cell phone in its
mouth

Ours (AoA): A little girl
holding a cell phone in her
hand

UD: A group of people on
a beach with a kite

AoA: A man standing un-
der a beach umbrella on
top of a beach

Ours (UD): A man is
standing on the beach with
a surfboard

Ours (AoA): A group of
people standing on top of
a beach

UD: A woman is looking at
a cell phone

AoA: A woman holding a
cell phone in her hand

Ours (UD): A person is
holding a pair of scissors

Ours (AoA): A woman is a
pair of scissors in a brown

Figure 4: Some qualitative samples from our baselines and Co-Occurence Updating models, referred as ours.

lects more numbers of various pairs than the other two sam-
plings, the models find a correlation between the adjectives
and the replaced objects. As an example, usage of little
or cute is usually adopted for boys or girls. When we re-
place the phrase “cute little boy” first with “cute little broc-
coli” and later with “cute little clock”. The model will learn
to associate “cute little” phrase first with broccoli and then
with clock. However, in Uniform Sampling the models will
merely discard this association because of the uniformity in
nature and in Inverse Multinomial, only a handful of pairs
will be associated with the phrase. Which is why we don’t
see a lot of disruption in Uniform and Inverse Multinomial.

4.8. Qualitative Results

Last but not least, we present some interesting qualita-
tive samples in Figure 4. Our first remark is that our mod-
els outperform the baselines in two ways, one of which is
the deletion of hallucinated objects. This behaviour can be
observed in the third and forth column where the baseline
models predicted a surfboard, frisbee, beach umbrella or
kite. These examples show the strong language prior that
our models exploit.

On the other hand, our models also outperform the base-
lines in that they not only delete the incorrect objects but
also replace it with the correct one. As an example, in the
first (or second) column of Figure 4, while baseline models
predict a dog (skateboard), our models corrects it to a horse
(traffic light). One important remark is that sentences’ verb
or action prediction stays the same, e.g. sitting, running,
jumping, in which it calls for an augmentation technique
for actions as well.

Finally, we see that even in the case of wrongly produced
captions (see fifth column), our models can still identify the
correct object however they are constrained by the language
models.

5. Conclusion

Since describing an image with a failure to correctly
identify objects is not desirable to humans, we focus at the
object bias in image captioning models. To reduce object
hallucination in image captioning, we propose 3 different
sampling techniques to augment sentences to be treated as
ground truth to train image captioning models. By exten-
sive analysis, we show that the proposed methods can sig-
nificantly diminish our models’ object bias on hallucination
metrics. Also, we demonstrate that our methods can achieve
much higher scores with the advances on object detectors.
Moreover, we identify that our suggested techniques makes
the models depend less on the visual features and by making
co-occurrence statistics of objects uniform, and resulting in
models generalizing better. But more importantly, we show
that it is possible to decrease the object bias without need-
ing extra data/annotations or increase in the model size or
the architecture. Our hope is that this study incites more re-
search on simple but effective methods to train deep models
while keeping the model complexity untouched.
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