|
Ernest Valveny, Oriol Ramos Terrades, Joan Mas and Marçal Rusiñol. 2013. Interactive Document Retrieval and Classification. In Angel Sappa and Jordi Vitria, eds. Multimodal Interaction in Image and Video Applications. Springer Berlin Heidelberg, 17–30.
Abstract: In this chapter we describe a system for document retrieval and classification following the interactive-predictive framework. In particular, the system addresses two different scenarios of document analysis: document classification based on visual appearance and logo detection. These two classical problems of document analysis are formulated following the interactive-predictive model, taking the user interaction into account to make easier the process of annotating and labelling the documents. A system implementing this model in a real scenario is presented and analyzed. This system also takes advantage of active learning techniques to speed up the task of labelling the documents.
|
|
|
Oriol Ramos Terrades, Ernest Valveny and Salvatore Tabbone. 2007. On the Combination of Ridgelets Descriptors for Symbol Recognition. Seventh IAPR International Workshop on Graphics Recognition.18–20.
|
|
|
Antonio Clavelli, Dimosthenis Karatzas and Josep Llados. 2010. A framework for the assessment of text extraction algorithms on complex colour images. 9th IAPR International Workshop on Document Analysis Systems.19–26.
Abstract: The availability of open, ground-truthed datasets and clear performance metrics is a crucial factor in the development of an application domain. The domain of colour text image analysis (real scenes, Web and spam images, scanned colour documents) has traditionally suffered from a lack of a comprehensive performance evaluation framework. Such a framework is extremely difficult to specify, and corresponding pixel-level accurate information tedious to define. In this paper we discuss the challenges and technical issues associated with developing such a framework. Then, we describe a complete framework for the evaluation of text extraction methods at multiple levels, provide a detailed ground-truth specification and present a case study on how this framework can be used in a real-life situation.
|
|
|
Alicia Fornes, Josep Llados, Oriol Ramos Terrades and Marçal Rusiñol. 2016. La Visió per Computador com a Eina per a la Interpretació Automàtica de Fonts Documentals.
|
|
|
Ariel Amato, Angel Sappa, Alicia Fornes, Felipe Lumbreras and Josep Llados. 2013. Divide and Conquer: Atomizing and Parallelizing A Task in A Mobile Crowdsourcing Platform. 2nd International ACM Workshop on Crowdsourcing for Multimedia.21–22.
Abstract: In this paper we present some conclusions about the advantages of having an efficient task formulation when a crowdsourcing platform is used. In particular we show how the task atomization and distribution can help to obtain results in an efficient way. Our proposal is based on a recursive splitting of the original task into a set of smaller and simpler tasks. As a result both more accurate and faster solutions are obtained. Our evaluation is performed on a set of ancient documents that need to be digitized.
|
|
|
Jaume Gibert, Ernest Valveny and Horst Bunke. 2011. Dimensionality Reduction for Graph of Words Embedding. In Xiaoyi Jiang, Miquel Ferrer and Andrea Torsello, eds. 8th IAPR-TC-15 International Workshop. Graph-Based Representations in Pattern Recognition.22–31. (LNCS.)
Abstract: The Graph of Words Embedding consists in mapping every graph of a given dataset to a feature vector by counting unary and binary relations between node attributes of the graph. While it shows good properties in classification problems, it suffers from high dimensionality and sparsity. These two issues are addressed in this article. Two well-known techniques for dimensionality reduction, kernel principal component analysis (kPCA) and independent component analysis (ICA), are applied to the embedded graphs. We discuss their performance compared to the classification of the original vectors on three different public databases of graphs.
|
|
|
Kaida Xiao, Chenyang Fu, D.Mylonas, Dimosthenis Karatzas and S. Wuerger. 2013. Unique Hue Data for Colour Appearance Models. Part ii: Chromatic Adaptation Transform. CRA, 38(1), 22–29.
Abstract: Unique hue settings of 185 observers under three room-lighting conditions were used to evaluate the accuracy of full and mixed chromatic adaptation transform models of CIECAM02 in terms of unique hue reproduction. Perceptual hue shifts in CIECAM02 were evaluated for both models with no clear difference using the current Commission Internationale de l'Éclairage (CIE) recommendation for mixed chromatic adaptation ratio. Using our large dataset of unique hue data as a benchmark, an optimised parameter is proposed for chromatic adaptation under mixed illumination conditions that produces more accurate results in unique hue reproduction. © 2011 Wiley Periodicals, Inc. Col Res Appl, 2013
|
|
|
Partha Pratim Roy, Umapada Pal and Josep Llados. 2010. Seal Object Detection in Document Images using GHT of Local Component Shapes. 10th ACM Symposium On Applied Computing.23–27.
Abstract: Due to noise, overlapped text/signature and multi-oriented nature, seal (stamp) object detection involves a difficult challenge. This paper deals with automatic detection of seal from documents with cluttered background. Here, a seal object is characterized by scale and rotation invariant spatial feature descriptors (distance and angular position) computed from recognition result of individual connected components (characters). Recognition of multi-scale and multi-oriented component is done using Support Vector Machine classifier. Generalized Hough Transform (GHT) is used to detect the seal and a voting is casted for finding possible location of the seal object in a document based on these spatial feature descriptor of components pairs. The peak of votes in GHT accumulator validates the hypothesis to locate the seal object in a document. Experimental results show that, the method is efficient to locate seal instance of arbitrary shape and orientation in documents.
|
|
|
Klaus Broelemann, Anjan Dutta, Xiaoyi Jiang and Josep Llados. 2014. Hierarchical Plausibility-Graphs for Symbol Spotting in Graphical Documents. In Bart Lamiroy and Jean-Marc Ogier, eds. Graphics Recognition. Current Trends and Challenges. Springer Berlin Heidelberg, 25–37. (LNCS.)
Abstract: Graph representation of graphical documents often suffers from noise such as spurious nodes and edges, and their discontinuity. In general these errors occur during the low-level image processing viz. binarization, skeletonization, vectorization etc. Hierarchical graph representation is a nice and efficient way to solve this kind of problem by hierarchically merging node-node and node-edge depending on the distance. But the creation of hierarchical graph representing the graphical information often uses hard thresholds on the distance to create the hierarchical nodes (next state) of the lower nodes (or states) of a graph. As a result, the representation often loses useful information. This paper introduces plausibilities to the nodes of hierarchical graph as a function of distance and proposes a modified algorithm for matching subgraphs of the hierarchical graphs. The plausibility-annotated nodes help to improve the performance of the matching algorithm on two hierarchical structures. To show the potential of this approach, we conduct an experiment with the SESYD dataset.
|
|
|
Arnau Baro, Pau Riba, Jorge Calvo-Zaragoza and Alicia Fornes. 2017. Optical Music Recognition by Recurrent Neural Networks. 14th IAPR International Workshop on Graphics Recognition.25–26.
Abstract: Optical Music Recognition is the task of transcribing a music score into a machine readable format. Many music scores are written in a single staff, and therefore, they could be treated as a sequence. Therefore, this work explores the use of Long Short-Term Memory (LSTM) Recurrent Neural Networks for reading the music score sequentially, where the LSTM helps in keeping the context. For training, we have used a synthetic dataset of more than 40000 images, labeled at primitive level
Keywords: Optical Music Recognition; Recurrent Neural Network; Long Short-Term Memory
|
|