|
Lluis Pere de las Heras, Joan Mas, Gemma Sanchez and Ernest Valveny. 2011. Wall Patch-Based Segmentation in Architectural Floorplans. 11th International Conference on Document Analysis and Recognition.1270–1274.
Abstract: Segmentation of architectural floor plans is a challenging task, mainly because of the large variability in the notation between different plans. In general, traditional techniques, usually based on analyzing and grouping structural primitives obtained by vectorization, are only able to handle a reduced range of similar notations. In this paper we propose an alternative patch-based segmentation approach working at pixel level, without need of vectorization. The image is divided into a set of patches and a set of features is extracted for every patch. Then, each patch is assigned to a visual word of a previously learned vocabulary and given a probability of belonging to each class of objects. Finally, a post-process assigns the final label for every pixel. This approach has been applied to the detection of walls on two datasets of architectural floor plans with different notations, achieving high accuracy rates.
|
|
|
Lluis Pere de las Heras, David Fernandez, Ernest Valveny, Josep Llados and Gemma Sanchez. 2013. Unsupervised wall detector in architectural floor plan. 12th International Conference on Document Analysis and Recognition.1245–1249.
Abstract: Wall detection in floor plans is a crucial step in a complete floor plan recognition system. Walls define the main structure of buildings and convey essential information for the detection of other structural elements. Nevertheless, wall segmentation is a difficult task, mainly because of the lack of a standard graphical notation. The existing approaches are restricted to small group of similar notations or require the existence of pre-annotated corpus of input images to learn each new notation. In this paper we present an automatic wall segmentation system, with the ability to handle completely different notations without the need of any annotated dataset. It only takes advantage of the general knowledge that walls are a repetitive element, naturally distributed within the plan and commonly modeled by straight parallel lines. The method has been tested on four datasets of real floor plans with different notations, and compared with the state-of-the-art. The results show its suitability for different graphical notations, achieving higher recall rates than the rest of the methods while keeping a high average precision.
|
|
|
Christophe Rigaud, Dimosthenis Karatzas, Joost Van de Weijer, Jean-Christophe Burie and Jean-Marc Ogier. 2013. An active contour model for speech balloon detection in comics. 12th International Conference on Document Analysis and Recognition.1240–1244.
Abstract: Comic books constitute an important cultural heritage asset in many countries. Digitization combined with subsequent comic book understanding would enable a variety of new applications, including content-based retrieval and content retargeting. Document understanding in this domain is challenging as comics are semi-structured documents, combining semantically important graphical and textual parts. Few studies have been done in this direction. In this work we detail a novel approach for closed and non-closed speech balloon localization in scanned comic book pages, an essential step towards a fully automatic comic book understanding. The approach is compared with existing methods for closed balloon localization found in the literature and results are presented.
|
|
|
Albert Berenguel, Oriol Ramos Terrades, Josep Llados and Cristina Cañero. 2017. Evaluation of Texture Descriptors for Validation of Counterfeit Documents. 14th International Conference on Document Analysis and Recognition.1237–1242.
Abstract: This paper describes an exhaustive comparative analysis and evaluation of different existing texture descriptor algorithms to differentiate between genuine and counterfeit documents. We include in our experiments different categories of algorithms and compare them in different scenarios with several counterfeit datasets, comprising banknotes and identity documents. Computational time in the extraction of each descriptor is important because the final objective is to use it in a real industrial scenario. HoG and CNN based descriptors stands out statistically over the rest in terms of the F1-score/time ratio performance.
|
|
|
Suman Ghosh, Lluis Gomez, Dimosthenis Karatzas and Ernest Valveny. 2015. Efficient indexing for Query By String text retrieval. 6th IAPR International Workshop on Camera Based Document Analysis and Recognition CBDAR2015.1236–1240.
Abstract: This paper deals with Query By String word spotting in scene images. A hierarchical text segmentation algorithm based on text specific selective search is used to find text regions. These regions are indexed per character n-grams present in the text region. An attribute representation based on Pyramidal Histogram of Characters (PHOC) is used to compare text regions with the query text. For generation of the index a similar attribute space based Pyramidal Histogram of character n-grams is used. These attribute models are learned using linear SVMs over the Fisher Vector [1] representation of the images along with the PHOC labels of the corresponding strings.
|
|
|
J. Chazalon, Marçal Rusiñol and Jean-Marc Ogier. 2015. Improving Document Matching Performance by Local Descriptor Filtering. 6th IAPR International Workshop on Camera Based Document Analysis and Recognition CBDAR2015.1216–1220.
Abstract: In this paper we propose an effective method aimed at reducing the amount of local descriptors to be indexed in a document matching framework. In an off-line training stage, the matching between the model document and incoming images is computed retaining the local descriptors from the model that steadily produce good matches. We have evaluated this approach by using the ICDAR2015 SmartDOC dataset containing near 25 000 images from documents to be captured by a mobile device. We have tested the performance of this filtering step by using
ORB and SIFT local detectors and descriptors. The results show an important gain both in quality of the final matching as well as in time and space requirements.
|
|
|
Mohamed Ali Souibgui and Y.Kessentini. 2022. DE-GAN: A Conditional Generative Adversarial Network for Document Enhancement. TPAMI, 44(3), 1180–1191.
Abstract: Documents often exhibit various forms of degradation, which make it hard to be read and substantially deteriorate the performance of an OCR system. In this paper, we propose an effective end-to-end framework named Document Enhancement Generative Adversarial Networks (DE-GAN) that uses the conditional GANs (cGANs) to restore severely degraded document images. To the best of our knowledge, this practice has not been studied within the context of generative adversarial deep networks. We demonstrate that, in different tasks (document clean up, binarization, deblurring and watermark removal), DE-GAN can produce an enhanced version of the degraded document with a high quality. In addition, our approach provides consistent improvements compared to state-of-the-art methods over the widely used DIBCO 2013, DIBCO 2017 and H-DIBCO 2018 datasets, proving its ability to restore a degraded document image to its ideal condition. The obtained results on a wide variety of degradation reveal the flexibility of the proposed model to be exploited in other document enhancement problems.
|
|
|
Jean-Christophe Burie and 9 others. 2015. ICDAR2015 Competition on Smartphone Document Capture and OCR (SmartDoc). 13th International Conference on Document Analysis and Recognition ICDAR2015.1161–1165.
Abstract: Smartphones are enabling new ways of capture,
hence arises the need for seamless and reliable acquisition and
digitization of documents, in order to convert them to editable,
searchable and a more human-readable format. Current stateof-the-art
works lack databases and baseline benchmarks for
digitizing mobile captured documents. We have organized a
competition for mobile document capture and OCR in order to
address this issue. The competition is structured into two independent
challenges: smartphone document capture, and smartphone
OCR. This report describes the datasets for both challenges
along with their ground truth, details the performance evaluation
protocols which we used, and presents the final results of the
participating methods. In total, we received 13 submissions: 8
for challenge-I, and 5 for challenge-2.
|
|
|
Dimosthenis Karatzas and 12 others. 2015. ICDAR 2015 Competition on Robust Reading. 13th International Conference on Document Analysis and Recognition ICDAR2015.1156–1160.
|
|
|
Josep Llados, Enric Marti and Juan J.Villanueva. 2001. Symbol recognition by error-tolerant subgraph matching between region adjacency graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(10), 1137–1143.
Abstract: The recognition of symbols in graphic documents is an intensive research activity in the community of pattern recognition and document analysis. A key issue in the interpretation of maps, engineering drawings, diagrams, etc. is the recognition of domain dependent symbols according to a symbol database. In this work we first review the most outstanding symbol recognition methods from two different points of view: application domains and pattern recognition methods. In the second part of the paper, open and unaddressed problems involved in symbol recognition are described, analyzing their current state of art and discussing future research challenges. Thus, issues such as symbol representation, matching, segmentation, learning, scalability of recognition methods and performance evaluation are addressed in this work. Finally, we discuss the perspectives of symbol recognition concerning to new paradigms such as user interfaces in handheld computers or document database and WWW indexing by graphical content.
|
|