|
Jon Almazan, Alicia Fornes and Ernest Valveny. 2011. A Non-Rigid Feature Extraction Method for Shape Recognition. 11th International Conference on Document Analysis and Recognition.987–991.
Abstract: This paper presents a methodology for shape recognition that focuses on dealing with the difficult problem of large deformations. The proposed methodology consists in a novel feature extraction technique, which uses a non-rigid representation adaptable to the shape. This technique employs a deformable grid based on the computation of geometrical centroids that follows a region partitioning algorithm. Then, a feature vector is extracted by computing pixel density measures around these geometrical centroids. The result is a shape descriptor that adapts its representation to the given shape and encodes the pixel density distribution. The validity of the method when dealing with large deformations has been experimentally shown over datasets composed of handwritten shapes. It has been applied to signature verification and shape recognition tasks demonstrating high accuracy and low computational cost.
|
|
|
Anjan Dutta, Josep Llados and Umapada Pal. 2011. Symbol Spotting in Line Drawings Through Graph Paths Hashing. 11th International Conference on Document Analysis and Recognition.982–986.
Abstract: In this paper we propose a symbol spotting technique through hashing the shape descriptors of graph paths (Hamiltonian paths). Complex graphical structures in line drawings can be efficiently represented by graphs, which ease the accurate localization of the model symbol. Graph paths are the factorized substructures of graphs which enable robust recognition even in the presence of noise and distortion. In our framework, the entire database of the graphical documents is indexed in hash tables by the locality sensitive hashing (LSH) of shape descriptors of the paths. The hashing data structure aims to execute an approximate k-NN search in a sub-linear time. The spotting method is formulated by a spatial voting scheme to the list of locations of the paths that are decided during the hash table lookup process. We perform detailed experiments with various dataset of line drawings and the results demonstrate the effectiveness and efficiency of the technique.
|
|
|
Jose Antonio Rodriguez, Gemma Sanchez and Josep Llados. 2007. A Pen-based Interface for Real-time Document Edition. 9th International Conference on Document Analysis and Recognition..939–944.
|
|
|
Miquel Ferrer, Dimosthenis Karatzas, Ernest Valveny, I. Bardaji and Horst Bunke. 2011. A Generic Framework for Median Graph Computation based on a Recursive Embedding Approach. CVIU, 115(7), 919–928.
Abstract: The median graph has been shown to be a good choice to obtain a represen- tative of a set of graphs. However, its computation is a complex problem. Recently, graph embedding into vector spaces has been proposed to obtain approximations of the median graph. The problem with such an approach is how to go from a point in the vector space back to a graph in the graph space. The main contribution of this paper is the generalization of this previ- ous method, proposing a generic recursive procedure that permits to recover the graph corresponding to a point in the vector space, introducing only the amount of approximation inherent to the use of graph matching algorithms. In order to evaluate the proposed method, we compare it with the set me- dian and with the other state-of-the-art embedding-based methods for the median graph computation. The experiments are carried out using four dif- ferent databases (one semi-artificial and three containing real-world data). Results show that with the proposed approach we can obtain better medi- ans, in terms of the sum of distances to the training graphs, than with the previous existing methods.
Keywords: Median Graph, Graph Embedding, Graph Matching, Structural Pattern Recognition
|
|
|
Sounak Dey, Anjan Dutta, Suman Ghosh, Ernest Valveny, Josep Llados and Umapada Pal. 2018. Learning Cross-Modal Deep Embeddings for Multi-Object Image Retrieval using Text and Sketch. 24th International Conference on Pattern Recognition.916–921.
Abstract: In this work we introduce a cross modal image retrieval system that allows both text and sketch as input modalities for the query. A cross-modal deep network architecture is formulated to jointly model the sketch and text input modalities as well as the the image output modality, learning a common embedding between text and images and between sketches and images. In addition, an attention model is used to selectively focus the attention on the different objects of the image, allowing for retrieval with multiple objects in the query. Experiments show that the proposed method performs the best in both single and multiple object image retrieval in standard datasets.
|
|
|
Marçal Rusiñol, Josep Llados and Philippe Dosch. 2007. Camera-Based Graphical Symbol Detection. 9th IEEE International Conference on Document Analysis and Recognition.884–888.
|
|
|
Suman Ghosh and Ernest Valveny. 2015. Query by String word spotting based on character bi-gram indexing. 13th International Conference on Document Analysis and Recognition ICDAR2015.881–885.
Abstract: In this paper we propose a segmentation-free query by string word spotting method. Both the documents and query strings are encoded using a recently proposed word representa- tion that projects images and strings into a common atribute space based on a pyramidal histogram of characters(PHOC). These attribute models are learned using linear SVMs over the Fisher Vector representation of the images along with the PHOC labels of the corresponding strings. In order to search through the whole page, document regions are indexed per character bi- gram using a similar attribute representation. On top of that, we propose an integral image representation of the document using a simplified version of the attribute model for efficient computation. Finally we introduce a re-ranking step in order to boost retrieval performance. We show state-of-the-art results for segmentation-free query by string word spotting in single-writer and multi-writer standard datasets
|
|
|
Maria Vanrell, Felipe Lumbreras, A. Pujol, Ramon Baldrich, Josep Llados and Juan J. Villanueva. 2001. Colour Normalisation Based on Background Information..
|
|
|
Muhammad Muzzamil Luqman, Jean-Yves Ramel, Josep Llados and Thierry Brouard. 2011. Subgraph Spotting Through Explicit Graph Embedding: An Application to Content Spotting in Graphic Document Images. 11th International Conference on Document Analysis and Recognition.870–874.
Abstract: We present a method for spotting a subgraph in a graph repository. Subgraph spotting is a very interesting research problem for various application domains where the use of a relational data structure is mandatory. Our proposed method accomplishes subgraph spotting through graph embedding. We achieve automatic indexation of a graph repository during off-line learning phase, where we (i) break the graphs into 2-node sub graphs (a.k.a. cliques of order 2), which are primitive building-blocks of a graph, (ii) embed the 2-node sub graphs into feature vectors by employing our recently proposed explicit graph embedding technique, (iii) cluster the feature vectors in classes by employing a classic agglomerative clustering technique, (iv) build an index for the graph repository and (v) learn a Bayesian network classifier. The subgraph spotting is achieved during the on-line querying phase, where we (i) break the query graph into 2-node sub graphs, (ii) embed them into feature vectors, (iii) employ the Bayesian network classifier for classifying the query 2-node sub graphs and (iv) retrieve the respective graphs by looking-up in the index of the graph repository. The graphs containing all query 2-node sub graphs form the set of result graphs for the query. Finally, we employ the adjacency matrix of each result graph along with a score function, for spotting the query graph in it. The proposed subgraph spotting method is equally applicable to a wide range of domains, offering ease of query by example (QBE) and granularity of focused retrieval. Experimental results are presented for graphs generated from two repositories of electronic and architectural document images.
|
|
|
Christophe Rigaud, Dimosthenis Karatzas, Joost Van de Weijer, Jean-Christophe Burie and Jean-Marc Ogier. 2013. Automatic text localisation in scanned comic books. Proceedings of the International Conference on Computer Vision Theory and Applications.814–819.
Abstract: Comic books constitute an important cultural heritage asset in many countries. Digitization combined with subsequent document understanding enable direct content-based search as opposed to metadata only search (e.g. album title or author name). Few studies have been done in this direction. In this work we detail a novel approach for the automatic text localization in scanned comics book pages, an essential step towards a fully automatic comics book understanding. We focus on speech text as it is semantically important and represents the majority of the text present in comics. The approach is compared with existing methods of text localization found in the literature and results are presented.
Keywords: Text localization; comics; text/graphic separation; complex background; unstructured document
|
|