toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Sergio Escalera; Alicia Fornes; Oriol Pujol; Petia Radeva edit  doi
isbn  openurl
  Title Multi-class Binary Symbol Classification with Circular Blurred Shape Models Type Conference Article
  Year 2009 Publication 15th International Conference on Image Analysis and Processing Abbreviated Journal  
  Volume 5716 Issue Pages 1005–1014  
  Keywords  
  Abstract Multi-class binary symbol classification requires the use of rich descriptors and robust classifiers. Shape representation is a difficult task because of several symbol distortions, such as occlusions, elastic deformations, gaps or noise. In this paper, we present the Circular Blurred Shape Model descriptor. This descriptor encodes the arrangement information of object parts in a correlogram structure. A prior blurring degree defines the level of distortion allowed to the symbol. Moreover, we learn the new feature space using a set of Adaboost classifiers, which are combined in the Error-Correcting Output Codes framework to deal with the multi-class categorization problem. The presented work has been validated over different multi-class data sets, and compared to the state-of-the-art descriptors, showing significant performance improvements.  
  Address Salerno, Italy  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-04145-7 Medium  
  Area Expedition Conference ICIAP  
  Notes MILAB;HuPBA;DAG Approved no  
  Call Number BCNPCL @ bcnpcl @ EFP2009c Serial 1186  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: