|
Jon Almazan, Alicia Fornes and Ernest Valveny. 2011. A Non-Rigid Feature Extraction Method for Shape Recognition. 11th International Conference on Document Analysis and Recognition.987–991.
Abstract: This paper presents a methodology for shape recognition that focuses on dealing with the difficult problem of large deformations. The proposed methodology consists in a novel feature extraction technique, which uses a non-rigid representation adaptable to the shape. This technique employs a deformable grid based on the computation of geometrical centroids that follows a region partitioning algorithm. Then, a feature vector is extracted by computing pixel density measures around these geometrical centroids. The result is a shape descriptor that adapts its representation to the given shape and encodes the pixel density distribution. The validity of the method when dealing with large deformations has been experimentally shown over datasets composed of handwritten shapes. It has been applied to signature verification and shape recognition tasks demonstrating high accuracy and low computational cost.
|
|
|
Jon Almazan, Alicia Fornes and Ernest Valveny. 2013. A Deformable HOG-based Shape Descriptor. 12th International Conference on Document Analysis and Recognition.1022–1026.
Abstract: In this paper we deal with the problem of recognizing handwritten shapes. We present a new deformable feature extraction method that adapts to the shape to be described, dealing in this way with the variability introduced in the handwriting domain. It consists in a selection of the regions that best define the shape to be described, followed by the computation of histograms of oriented gradients-based features over these points. Our results significantly outperform other descriptors in the literature for the task of hand-drawn shape recognition and handwritten word retrieval
|
|
|
Jon Almazan, David Fernandez, Alicia Fornes, Josep Llados and Ernest Valveny. 2012. A Coarse-to-Fine Approach for Handwritten Word Spotting in Large Scale Historical Documents Collection. 13th International Conference on Frontiers in Handwriting Recognition.453–458.
Abstract: In this paper we propose an approach for word spotting in handwritten document images. We state the problem from a focused retrieval perspective, i.e. locating instances of a query word in a large scale dataset of digitized manuscripts. We combine two approaches, namely one based on word segmentation and another one segmentation-free. The first approach uses a hashing strategy to coarsely prune word images that are unlikely to be instances of the query word. This process is fast but has a low precision due to the errors introduced in the segmentation step. The regions containing candidate words are sent to the second process based on a state of the art technique from the visual object detection field. This discriminative model represents the appearance of the query word and computes a similarity score. In this way we propose a coarse-to-fine approach achieving a compromise between efficiency and accuracy. The validation of the model is shown using a collection of old handwritten manuscripts. We appreciate a substantial improvement in terms of precision regarding the previous proposed method with a low computational cost increase.
|
|
|
Jon Almazan, Ernest Valveny and Alicia Fornes. 2011. Deforming the Blurred Shape Model for Shape Description and Recognition. In Jordi Vitria, Joao Miguel Raposo and Mario Hernandez, eds. 5th Iberian Conference on Pattern Recognition and Image Analysis. Berlin, Springer-Verlag, 1–8. (LNCS.)
Abstract: This paper presents a new model for the description and recognition of distorted shapes, where the image is represented by a pixel density distribution based on the Blurred Shape Model combined with a non-linear image deformation model. This leads to an adaptive structure able to capture elastic deformations in shapes. This method has been evaluated using thee different datasets where deformations are present, showing the robustness and good performance of the new model. Moreover, we show that incorporating deformation and flexibility, the new model outperforms the BSM approach when classifying shapes with high variability of appearance.
|
|
|
Jon Almazan, Lluis Gomez, Suman Ghosh, Ernest Valveny and Dimosthenis Karatzas. 2020. WATTS: A common representation of word images and strings using embedded attributes for text recognition and retrieval. In Analysis”, K.A. and C.V. Jawahar, eds. Visual Text Interpretation – Algorithms and Applications in Scene Understanding and Document Analysis. Springer. (Series on Advances in Computer Vision and Pattern Recognition.)
|
|
|
Jordi Vitria and 6 others. 1999. Real time recognition of pharmaceutical products by subspace methods.
|
|
|
Jordy Van Landeghem and 12 others. 2023. Document Understanding Dataset and Evaluation (DUDE). 20th IEEE International Conference on Computer Vision.19528–19540.
Abstract: We call on the Document AI (DocAI) community to re-evaluate current methodologies and embrace the challenge of creating more practically-oriented benchmarks. Document Understanding Dataset and Evaluation (DUDE) seeks to remediate the halted research progress in understanding visually-rich documents (VRDs). We present a new dataset with novelties related to types of questions, answers, and document layouts based on multi-industry, multi-domain, and multi-page VRDs of various origins and dates. Moreover, we are pushing the boundaries of current methods by creating multi-task and multi-domain evaluation setups that more accurately simulate real-world situations where powerful generalization and adaptation under low-resource settings are desired. DUDE aims to set a new standard as a more practical, long-standing benchmark for the community, and we hope that it will lead to future extensions and contributions that address real-world challenges. Finally, our work illustrates the importance of finding more efficient ways to model language, images, and layout in DocAI.
|
|
|
Jose Antonio Rodriguez, Florent Perronnin, Gemma Sanchez and Josep Llados. 2008. Unsupervised writer style adaptation for handwritten word spotting. Pattern Recognition. 19th International Conference on, IBM Best Student Paper Award..
|
|
|
Jose Antonio Rodriguez, Florent Perronnin, Gemma Sanchez and Josep Llados. 2010. Unsupervised writer adaptation of whole-word HMMs with application to word-spotting. PRL, 31(8), 742–749.
Abstract: In this paper we propose a novel approach for writer adaptation in a handwritten word-spotting task. The method exploits the fact that the semi-continuous hidden Markov model separates the word model parameters into (i) a codebook of shapes and (ii) a set of word-specific parameters.
Our main contribution is to employ this property to derive writer-specific word models by statistically adapting an initial universal codebook to each document. This process is unsupervised and does not even require the appearance of the keyword(s) in the searched document. Experimental results show an increase in performance when this adaptation technique is applied. To the best of our knowledge, this is the first work dealing with adaptation for word-spotting. The preliminary version of this paper obtained an IBM Best Student Paper Award at the 19th International Conference on Pattern Recognition.
Keywords: Word-spotting; Handwriting recognition; Writer adaptation; Hidden Markov model; Document analysis
|
|
|
Jose Antonio Rodriguez, Gemma Sanchez and Josep Llados. 2006. Automatic Interpretation of Proofreading Sketches.
|
|