|
Jaume Gibert, Ernest Valveny and Horst Bunke. 2011. Dimensionality Reduction for Graph of Words Embedding. In Xiaoyi Jiang, Miquel Ferrer and Andrea Torsello, eds. 8th IAPR-TC-15 International Workshop. Graph-Based Representations in Pattern Recognition.22–31. (LNCS.)
Abstract: The Graph of Words Embedding consists in mapping every graph of a given dataset to a feature vector by counting unary and binary relations between node attributes of the graph. While it shows good properties in classification problems, it suffers from high dimensionality and sparsity. These two issues are addressed in this article. Two well-known techniques for dimensionality reduction, kernel principal component analysis (kPCA) and independent component analysis (ICA), are applied to the embedded graphs. We discuss their performance compared to the classification of the original vectors on three different public databases of graphs.
|
|
|
Jaume Gibert, Ernest Valveny and Horst Bunke. 2011. Vocabulary Selection for Graph of Words Embedding. In Vitria, J., J.M.R. Sanches and M. Hernández, eds. 5th Iberian Conference on Pattern Recognition and Image Analysis. Berlin, Springer, 216–223. (LNCS.)
Abstract: The Graph of Words Embedding consists in mapping every graph in a given dataset to a feature vector by counting unary and binary relations between node attributes of the graph. It has been shown to perform well for graphs with discrete label alphabets. In this paper we extend the methodology to graphs with n-dimensional continuous attributes by selecting node representatives. We propose three different discretization procedures for the attribute space and experimentally evaluate the dependence on both the selector and the number of node representatives. In the context of graph classification, the experimental results reveal that on two out of three public databases the proposed extension achieves superior performance over a standard reference system.
|
|
|
Jaume Gibert, Ernest Valveny and Horst Bunke. 2013. Embedding of Graphs with Discrete Attributes Via Label Frequencies. IJPRAI, 27(3), 1360002–1360029.
Abstract: Graph-based representations of patterns are very flexible and powerful, but they are not easily processed due to the lack of learning algorithms in the domain of graphs. Embedding a graph into a vector space solves this problem since graphs are turned into feature vectors and thus all the statistical learning machinery becomes available for graph input patterns. In this work we present a new way of embedding discrete attributed graphs into vector spaces using node and edge label frequencies. The methodology is experimentally tested on graph classification problems, using patterns of different nature, and it is shown to be competitive to state-of-the-art classification algorithms for graphs, while being computationally much more efficient.
Keywords: Discrete attributed graphs; graph embedding; graph classification
|
|
|
Jaume Gibert, Ernest Valveny and Horst Bunke. 2012. Graph Embedding in Vector Spaces by Node Attribute Statistics. PR, 45(9), 3072–3083.
Abstract: Graph-based representations are of broad use and applicability in pattern recognition. They exhibit, however, a major drawback with regards to the processing tools that are available in their domain. Graphembedding into vectorspaces is a growing field among the structural pattern recognition community which aims at providing a feature vector representation for every graph, and thus enables classical statistical learning machinery to be used on graph-based input patterns. In this work, we propose a novel embedding methodology for graphs with continuous nodeattributes and unattributed edges. The approach presented in this paper is based on statistics of the node labels and the edges between them, based on their similarity to a set of representatives. We specifically deal with an important issue of this methodology, namely, the selection of a suitable set of representatives. In an experimental evaluation, we empirically show the advantages of this novel approach in the context of different classification problems using several databases of graphs.
Keywords: Structural pattern recognition; Graph embedding; Data clustering; Graph classification
|
|
|
Jaume Gibert, Ernest Valveny and Horst Bunke. 2012. Feature Selection on Node Statistics Based Embedding of Graphs. PRL, 33(15), 1980–1990.
Abstract: Representing a graph with a feature vector is a common way of making statistical machine learning algorithms applicable to the domain of graphs. Such a transition from graphs to vectors is known as graphembedding. A key issue in graphembedding is to select a proper set of features in order to make the vectorial representation of graphs as strong and discriminative as possible. In this article, we propose features that are constructed out of frequencies of node label representatives. We first build a large set of features and then select the most discriminative ones according to different ranking criteria and feature transformation algorithms. On different classification tasks, we experimentally show that only a small significant subset of these features is needed to achieve the same classification rates as competing to state-of-the-art methods.
Keywords: Structural pattern recognition; Graph embedding; Feature ranking; PCA; Graph classification
|
|
|
Jaume Gibert and Ernest Valveny. 2010. Graph Embedding based on Nodes Attributes Representatives and a Graph of Words Representation. In In E.R. Hancock, R.C.W., T. Windeatt, I. Ulusoy and F. Escolano,, ed. 13th International worshop on structural and syntactic pattern recognition and 8th international worshop on statistical pattern recognition. Springer Berlin Heidelberg, 223–232. (LNCS.)
Abstract: Although graph embedding has recently been used to extend statistical pattern recognition techniques to the graph domain, some existing embeddings are usually computationally expensive as they rely on classical graph-based operations. In this paper we present a new way to embed graphs into vector spaces by first encapsulating the information stored in the original graph under another graph representation by clustering the attributes of the graphs to be processed. This new representation makes the association of graphs to vectors an easy step by just arranging both node attributes and the adjacency matrix in the form of vectors. To test our method, we use two different databases of graphs whose nodes attributes are of different nature. A comparison with a reference method permits to show that this new embedding is better in terms of classification rates, while being much more faster.
|
|
|
Jaume Gibert. 2012. Vector Space Embedding of Graphs via Statistics of Labelling Information. (Ph.D. thesis, Ediciones Graficas Rey.)
Abstract: Pattern recognition is the task that aims at distinguishing objects among different classes. When such a task wants to be solved in an automatic way a crucial step is how to formally represent such patterns to the computer. Based on the different representational formalisms, we may distinguish between statistical and structural pattern recognition. The former describes objects as a set of measurements arranged in the form of what is called a feature vector. The latter assumes that relations between parts of the underlying objects need to be explicitly represented and thus it uses relational structures such as graphs for encoding their inherent information. Vector spaces are a very flexible mathematical structure that has allowed to come up with several efficient ways for the analysis of patterns under the form of feature vectors. Nevertheless, such a representation cannot explicitly cope with binary relations between parts of the objects and it is restricted to measure the exact same number of features for each pattern under study regardless of their complexity. Graph-based representations present the contrary situation. They can easily adapt to the inherent complexity of the patterns but introduce a problem of high computational complexity, hindering the design of efficient tools to process and analyse patterns.
Solving this paradox is the main goal of this thesis. The ideal situation for solving pattern recognition problems would be to represent the patterns using relational structures such as graphs, and to be able to use the wealthy repository of data processing tools from the statistical pattern recognition domain. An elegant solution to this problem is to transform the graph domain into a vector domain where any processing algorithm can be applied. In other words, by mapping each graph to a point in a vector space we automatically get access to the rich set of algorithms from the statistical domain to be applied in the graph domain. Such methodology is called graph embedding.
In this thesis we propose to associate feature vectors to graphs in a simple and very efficient way by just putting attention on the labelling information that graphs store. In particular, we count frequencies of node labels and of edges between labels. Although their locality, these features are able to robustly represent structurally global properties of graphs, when considered together in the form of a vector. We initially deal with the case of discrete attributed graphs, where features are easy to compute. The continuous case is tackled as a natural generalization of the discrete one, where rather than counting node and edge labelling instances, we count statistics of some representatives of them. We encounter how the proposed vectorial representations of graphs suffer from high dimensionality and correlation among components and we face these problems by feature selection algorithms. We also explore how the diversity of different embedding representations can be exploited in order to boost the performance of base classifiers in a multiple classifier systems framework. An extensive experimental evaluation finally shows how the methodology we propose can be efficiently computed and compete with other graph matching and embedding methodologies.
|
|
|
Jaume Gibert. 2009. Learning structural representations and graph matching paradigms in the context of object recognition. (Master's thesis, .)
|
|
|
Jaime Lopez-Krahe, Josep Llados and Enric Marti. 2000. Architectural Floor Plan Analysis. University of Edinburgh.
|
|
|
J.Kuhn and 10 others. 2015. Advancing Physics Learning Through Traversing a Multi-Modal Experimentation Space. Workshop Proceedings on the 11th International Conference on Intelligent Environments.373–380.
Abstract: Translating conceptual knowledge into real world experiences presents a significant educational challenge. This position paper presents an approach that supports learners in moving seamlessly between conceptual learning and their application in the real world by bringing physical and virtual experiments into everyday settings. Learners are empowered in conducting these situated experiments in a variety of physical settings by leveraging state of the art mobile, augmented reality, and virtual reality technology. A blend of mobile-based multi-sensory physical experiments, augmented reality and enabling virtual environments can allow learners to bridge their conceptual learning with tangible experiences in a completely novel manner. This approach focuses on the learner by applying self-regulated personalised learning techniques, underpinned by innovative pedagogical approaches and adaptation techniques, to ensure that the needs and preferences of each learner are catered for individually.
|
|