|
Jiaolong Xu, Liang Xiao and Antonio Lopez. 2019. Self-supervised Domain Adaptation for Computer Vision Tasks. ACCESS, 7, 156694–156706.
Abstract: Recent progress of self-supervised visual representation learning has achieved remarkable success on many challenging computer vision benchmarks. However, whether these techniques can be used for domain adaptation has not been explored. In this work, we propose a generic method for self-supervised domain adaptation, using object recognition and semantic segmentation of urban scenes as use cases. Focusing on simple pretext/auxiliary tasks (e.g. image rotation prediction), we assess different learning strategies to improve domain adaptation effectiveness by self-supervision. Additionally, we propose two complementary strategies to further boost the domain adaptation accuracy on semantic segmentation within our method, consisting of prediction layer alignment and batch normalization calibration. The experimental results show adaptation levels comparable to most studied domain adaptation methods, thus, bringing self-supervision as a new alternative for reaching domain adaptation. The code is available at this link. https://github.com/Jiaolong/self-supervised-da.
|
|
|
Fernando Barrera, Felipe Lumbreras and Angel Sappa. 2012. Multimodal Stereo Vision System: 3D Data Extraction and Algorithm Evaluation. J-STSP, 6(5), 437–446.
Abstract: This paper proposes an imaging system for computing sparse depth maps from multispectral images. A special stereo head consisting of an infrared and a color camera defines the proposed multimodal acquisition system. The cameras are rigidly attached so that their image planes are parallel. Details about the calibration and image rectification procedure are provided. Sparse disparity maps are obtained by the combined use of mutual information enriched with gradient information. The proposed approach is evaluated using a Receiver Operating Characteristics curve. Furthermore, a multispectral dataset, color and infrared images, together with their corresponding ground truth disparity maps, is generated and used as a test bed. Experimental results in real outdoor scenarios are provided showing its viability and that the proposed approach is not restricted to a specific domain.
|
|
|
Katerine Diaz, Jesus Martinez del Rincon, Aura Hernandez-Sabate and Debora Gil. 2018. Continuous head pose estimation using manifold subspace embedding and multivariate regression. ACCESS, 6, 18325–18334.
Abstract: In this paper, a continuous head pose estimation system is proposed to estimate yaw and pitch head angles from raw facial images. Our approach is based on manifold learningbased methods, due to their promising generalization properties shown for face modelling from images. The method combines histograms of oriented gradients, generalized discriminative common vectors and continuous local regression to achieve successful performance. Our proposal was tested on multiple standard face datasets, as well as in a realistic scenario. Results show a considerable performance improvement and a higher consistence of our model in comparison with other state-of-art methods, with angular errors varying between 9 and 17 degrees.
Keywords: Head Pose estimation; HOG features; Generalized Discriminative Common Vectors; B-splines; Multiple linear regression
|
|
|
Enric Marti, J.Roncaries, Debora Gil, Aura Hernandez-Sabate, Antoni Gurgui and Ferran Poveda. 2015. PBL On Line: A proposal for the organization, part-time monitoring and assessment of PBL group activities.
|
|
|
Aura Hernandez-Sabate, Meritxell Joanpere, Nuria Gorgorio and Lluis Albarracin. 2015. Mathematics learning opportunities when playing a Tower Defense Game.
Abstract: A qualitative research study is presented herein with the purpose of identifying mathematics learning opportunities in students between 10 and 12 years old while playing a commercial version of a Tower Defense game. These learning opportunities are understood as mathematicisable moments of the game and involve the establishment of relationships between the game and mathematical problem solving. Based on the analysis of these mathematicisable moments, we conclude that the game can promote problem-solving processes and learning opportunities that can be associated with different mathematical contents that appears in mathematics curricula, thought it seems that teacher or new game elements might be needed to facilitate the processes.
Keywords: Tower Defense game; learning opportunities; mathematics; problem solving; game design
|
|
|
Felipe Lumbreras and Joan Serrat. 1996. Segmentation of petrographical images of marbles. Computers and Geosciences. 22(5):547–558.
|
|
|
A.F. Sole, S. Ngan, G. Sapiro, X. Hu and Antonio Lopez. 2001. Anisotropic 2-D and 3-D Averaging of fMRI Signals. IEEE Transactions on Medical Imaging, 20(2): 86–93 (IF: 3.142).
|
|
|
Daniel Ponsa, Robert Benavente, Felipe Lumbreras, J. Martinez and Xavier Roca. 2003. Quality control of safety belts by machine vision inspection for real-time production.
|
|
|
A.F. Sole, Antonio Lopez and G. Sapiro. 2001. Crease Enhancement Diffusion. Computer Vision and Image Understanding, 84(2): 241–248 (IF: 1.298).
|
|
|
A. Restrepo, Angel Sappa and M. Devy. 2005. Edge registration versus triangular mesh registration, a comparative study.
|
|