|
Enric Marti, J.Roncaries, Debora Gil, Aura Hernandez-Sabate, Antoni Gurgui and Ferran Poveda. 2015. PBL On Line: A proposal for the organization, part-time monitoring and assessment of PBL group activities.
|
|
|
Aura Hernandez-Sabate, Meritxell Joanpere, Nuria Gorgorio and Lluis Albarracin. 2015. Mathematics learning opportunities when playing a Tower Defense Game.
Abstract: A qualitative research study is presented herein with the purpose of identifying mathematics learning opportunities in students between 10 and 12 years old while playing a commercial version of a Tower Defense game. These learning opportunities are understood as mathematicisable moments of the game and involve the establishment of relationships between the game and mathematical problem solving. Based on the analysis of these mathematicisable moments, we conclude that the game can promote problem-solving processes and learning opportunities that can be associated with different mathematical contents that appears in mathematics curricula, thought it seems that teacher or new game elements might be needed to facilitate the processes.
Keywords: Tower Defense game; learning opportunities; mathematics; problem solving; game design
|
|
|
Katerine Diaz, Aura Hernandez-Sabate and Antonio Lopez. 2016. A reduced feature set for driver head pose estimation. ASOC, 45, 98–107.
Abstract: Evaluation of driving performance is of utmost importance in order to reduce road accident rate. Since driving ability includes visual-spatial and operational attention, among others, head pose estimation of the driver is a crucial indicator of driving performance. This paper proposes a new automatic method for coarse and fine head's yaw angle estimation of the driver. We rely on a set of geometric features computed from just three representative facial keypoints, namely the center of the eyes and the nose tip. With these geometric features, our method combines two manifold embedding methods and a linear regression one. In addition, the method has a confidence mechanism to decide if the classification of a sample is not reliable. The approach has been tested using the CMU-PIE dataset and our own driver dataset. Despite the very few facial keypoints required, the results are comparable to the state-of-the-art techniques. The low computational cost of the method and its robustness makes feasible to integrate it in massive consume devices as a real time application.
Keywords: Head pose estimation; driving performance evaluation; subspace based methods; linear regression
|
|
|
Miguel Oliveira, Victor Santos, Angel Sappa, P. Dias and A. Moreira. 2016. Incremental Scenario Representations for Autonomous Driving using Geometric Polygonal Primitives. RAS, 83, 312–325.
Abstract: When an autonomous vehicle is traveling through some scenario it receives a continuous stream of sensor data. This sensor data arrives in an asynchronous fashion and often contains overlapping or redundant information. Thus, it is not trivial how a representation of the environment observed by the vehicle can be created and updated over time. This paper presents a novel methodology to compute an incremental 3D representation of a scenario from 3D range measurements. We propose to use macro scale polygonal primitives to model the scenario. This means that the representation of the scene is given as a list of large scale polygons that describe the geometric structure of the environment. Furthermore, we propose mechanisms designed to update the geometric polygonal primitives over time whenever fresh sensor data is collected. Results show that the approach is capable of producing accurate descriptions of the scene, and that it is computationally very efficient when compared to other reconstruction techniques.
Keywords: Incremental scene reconstruction; Point clouds; Autonomous vehicles; Polygonal primitives
|
|
|
Angel Sappa, P. Carvajal, Cristhian A. Aguilera-Carrasco, Miguel Oliveira, Dennis Romero and Boris X. Vintimilla. 2016. Wavelet based visible and infrared image fusion: a comparative study. SENS, 16(6), 1–15.
Abstract: This paper evaluates different wavelet-based cross-spectral image fusion strategies adopted to merge visible and infrared images. The objective is to find the best setup independently of the evaluation metric used to measure the performance. Quantitative performance results are obtained with state of the art approaches together with adaptations proposed in the current work. The options evaluated in the current work result from the combination of different setups in the wavelet image decomposition stage together with different fusion strategies for the final merging stage that generates the resulting representation. Most of the approaches evaluate results according to the application for which they are intended for. Sometimes a human observer is selected to judge the quality of the obtained results. In the current work, quantitative values are considered in order to find correlations between setups and performance of obtained results; these correlations can be used to define a criteria for selecting the best fusion strategy for a given pair of cross-spectral images. The whole procedure is evaluated with a large set of correctly registered visible and infrared image pairs, including both Near InfraRed (NIR) and Long Wave InfraRed (LWIR).
Keywords: Image fusion; fusion evaluation metrics; visible and infrared imaging; discrete wavelet transform
|
|
|
Angel Sappa and 6 others. 2016. Monocular visual odometry: A cross-spectral image fusion based approach. RAS, 85, 26–36.
Abstract: This manuscript evaluates the usage of fused cross-spectral images in a monocular visual odometry approach. Fused images are obtained through a Discrete Wavelet Transform (DWT) scheme, where the best setup is empirically obtained by means of a mutual information based evaluation metric. The objective is to have a flexible scheme where fusion parameters are adapted according to the characteristics of the given images. Visual odometry is computed from the fused monocular images using an off the shelf approach. Experimental results using data sets obtained with two different platforms are presented. Additionally, comparison with a previous approach as well as with monocular-visible/infrared spectra are also provided showing the advantages of the proposed scheme.
Keywords: Monocular visual odometry; LWIR-RGB cross-spectral imaging; Image fusion
|
|
|
Miguel Oliveira, Victor Santos, Angel Sappa, P. Dias and A. Moreira. 2016. Incremental texture mapping for autonomous driving. RAS, 84, 113–128.
Abstract: Autonomous vehicles have a large number of on-board sensors, not only for providing coverage all around the vehicle, but also to ensure multi-modality in the observation of the scene. Because of this, it is not trivial to come up with a single, unique representation that feeds from the data given by all these sensors. We propose an algorithm which is capable of mapping texture collected from vision based sensors onto a geometric description of the scenario constructed from data provided by 3D sensors. The algorithm uses a constrained Delaunay triangulation to produce a mesh which is updated using a specially devised sequence of operations. These enforce a partial configuration of the mesh that avoids bad quality textures and ensures that there are no gaps in the texture. Results show that this algorithm is capable of producing fine quality textures.
Keywords: Scene reconstruction; Autonomous driving; Texture mapping
|
|
|
Cristhian A. Aguilera-Carrasco, Angel Sappa, Cristhian Aguilera and Ricardo Toledo. 2017. Cross-Spectral Local Descriptors via Quadruplet Network. SENS, 17(4), 873.
Abstract: This paper presents a novel CNN-based architecture, referred to as Q-Net, to learn local feature descriptors that are useful for matching image patches from two different spectral bands. Given correctly matched and non-matching cross-spectral image pairs, a quadruplet network is trained to map input image patches to a common Euclidean space, regardless of the input spectral band. Our approach is inspired by the recent success of triplet networks in the visible spectrum, but adapted for cross-spectral scenarios, where, for each matching pair, there are always two possible non-matching patches: one for each spectrum. Experimental evaluations on a public cross-spectral VIS-NIR dataset shows that the proposed approach improves the state-of-the-art. Moreover, the proposed technique can also be used in mono-spectral settings, obtaining a similar performance to triplet network descriptors, but requiring less training data.
|
|
|
David Vazquez and 7 others. 2017. A Benchmark for Endoluminal Scene Segmentation of Colonoscopy Images. JHCE, 2040–2295.
Abstract: Colorectal cancer (CRC) is the third cause of cancer death world-wide. Currently, the standard approach to reduce CRC-related mortality is to perform regular screening in search for polyps and colonoscopy is the screening tool of choice. The main limitations of this screening procedure are polyp miss- rate and inability to perform visual assessment of polyp malignancy. These drawbacks can be reduced by designing Decision Support Systems (DSS) aim- ing to help clinicians in the different stages of the procedure by providing endoluminal scene segmentation. Thus, in this paper, we introduce an extended benchmark of colonoscopy image segmentation, with the hope of establishing a new strong benchmark for colonoscopy image analysis research. The proposed dataset consists of 4 relevant classes to inspect the endolumninal scene, tar- geting different clinical needs. Together with the dataset and taking advantage of advances in semantic segmentation literature, we provide new baselines by training standard fully convolutional networks (FCN). We perform a compar- ative study to show that FCN significantly outperform, without any further post-processing, prior results in endoluminal scene segmentation, especially with respect to polyp segmentation and localization.
Keywords: Colonoscopy images; Deep Learning; Semantic Segmentation
|
|
|
Joan Serrat, Felipe Lumbreras, Francisco Blanco, Manuel Valiente and Montserrat Lopez-Mesas. 2017. myStone: A system for automatic kidney stone classification. ESA, 89, 41–51.
Abstract: Kidney stone formation is a common disease and the incidence rate is constantly increasing worldwide. It has been shown that the classification of kidney stones can lead to an important reduction of the recurrence rate. The classification of kidney stones by human experts on the basis of certain visual color and texture features is one of the most employed techniques. However, the knowledge of how to analyze kidney stones is not widespread, and the experts learn only after being trained on a large number of samples of the different classes. In this paper we describe a new device specifically designed for capturing images of expelled kidney stones, and a method to learn and apply the experts knowledge with regard to their classification. We show that with off the shelf components, a carefully selected set of features and a state of the art classifier it is possible to automate this difficult task to a good degree. We report results on a collection of 454 kidney stones, achieving an overall accuracy of 63% for a set of eight classes covering almost all of the kidney stones taxonomy. Moreover, for more than 80% of samples the real class is the first or the second most probable class according to the system, being then the patient recommendations for the two top classes similar. This is the first attempt towards the automatic visual classification of kidney stones, and based on the current results we foresee better accuracies with the increase of the dataset size.
Keywords: Kidney stone; Optical device; Computer vision; Image classification
|
|