|
Ernest Valveny, & Enric Marti. (1997)." Dimensions analysis in hand-drawn architectural drawings" In (SNRFAI’97) 7th Spanish National Symposium on Pattern Recognition and Image Analysis (pp. 90–91). CVC-UAB.
|
|
|
Ernest Valveny, Ricardo Toledo, Ramon Baldrich, & Enric Marti. (2002)." Combining recognition-based in segmentation-based approaches for graphic symol recognition using deformable template matching" In Proceeding of the Second IASTED International Conference Visualization, Imaging and Image Proceesing VIIP 2002 (502–507).
|
|
|
Aura Hernandez-Sabate, Debora Gil, David Roche, Monica M. S. Matsumoto, & Sergio S. Furuie. (2011). "Inferring the Performance of Medical Imaging Algorithms " In Pedro Real, Daniel Diaz-Pernil, Helena Molina-Abril, Ainhoa Berciano, & Walter Kropatsch (Eds.), 14th International Conference on Computer Analysis of Images and Patterns (Vol. 6854, pp. 520–528). L. Berlin: Springer-Verlag Berlin Heidelberg.
Abstract: Evaluation of the performance and limitations of medical imaging algorithms is essential to estimate their impact in social, economic or clinical aspects. However, validation of medical imaging techniques is a challenging task due to the variety of imaging and clinical problems involved, as well as, the difficulties for systematically extracting a reliable solely ground truth. Although specific validation protocols are reported in any medical imaging paper, there are still two major concerns: definition of standardized methodologies transversal to all problems and generalization of conclusions to the whole clinical data set.
We claim that both issues would be fully solved if we had a statistical model relating ground truth and the output of computational imaging techniques. Such a statistical model could conclude to what extent the algorithm behaves like the ground truth from the analysis of a sampling of the validation data set. We present a statistical inference framework reporting the agreement and describing the relationship of two quantities. We show its transversality by applying it to validation of two different tasks: contour segmentation and landmark correspondence.
Keywords: Validation, Statistical Inference, Medical Imaging Algorithms.
|
|
|
David Roche, Debora Gil, & Jesus Giraldo. (2011). "An inference model for analyzing termination conditions of Evolutionary Algorithms " In 14th Congrès Català en Intel·ligencia Artificial (pp. 216–225).
Abstract: In real-world problems, it is mandatory to design a termination condition for Evolutionary Algorithms (EAs) ensuring stabilization close to the unknown optimum. Distribution-based quantities are good candidates as far as suitable parameters are used. A main limitation for application to real-world problems is that such parameters strongly depend on the topology of the objective function, as well as, the EA paradigm used.
We claim that the termination problem would be fully solved if we had a model measuring to what extent a distribution-based quantity asymptotically behaves like the solution accuracy. We present a regression-prediction model that relates any two given quantities and reports if they can be statistically swapped as termination conditions. Our framework is applied to two issues. First, exploring if the parameters involved in the computation of distribution-based quantities influence their asymptotic behavior. Second, to what extent existing distribution-based quantities can be asymptotically exchanged for the accuracy of the EA solution.
Keywords: Evolutionary Computation Convergence, Termination Conditions, Statistical Inference
|
|
|
David Roche, Debora Gil, & Jesus Giraldo. (2011). "Using statistical inference for designing termination conditions ensuring convergence of Evolutionary Algorithms " In 11th European Conference on Artificial Life.
Abstract: A main challenge in Evolutionary Algorithms (EAs) is determining a termination condition ensuring stabilization close to the optimum in real-world applications. Although for known test functions distribution-based quantities are good candidates (as far as suitable parameters are used), in real-world problems an open question still remains unsolved. How can we estimate an upper-bound for the termination condition value ensuring a given accuracy for the (unknown) EA solution?
We claim that the termination problem would be fully solved if we defined a quantity (depending only on the EA output) behaving like the solution accuracy. The open question would be, then, satisfactorily answered if we had a model relating both quantities, since accuracy could be predicted from the alternative quantity. We present a statistical inference framework addressing two topics: checking the correlation between the two quantities and defining a regression model for predicting (at a given confidence level) accuracy values from the EA output.
|
|
|
Andrew Nolan, Daniel Serrano, Aura Hernandez-Sabate, Daniel Ponsa, & Antonio Lopez. (2013). "Obstacle mapping module for quadrotors on outdoor Search and Rescue operations " In International Micro Air Vehicle Conference and Flight Competition.
Abstract: Obstacle avoidance remains a challenging task for Micro Aerial Vehicles (MAV), due to their limited payload capacity to carry advanced sensors. Unlike larger vehicles, MAV can only carry light weight sensors, for instance a camera, which is our main assumption in this work. We explore passive monocular depth estimation and propose a novel method Position Aided Depth Estimation
(PADE). We analyse PADE performance and compare it against the extensively used Time To Collision (TTC). We evaluate the accuracy, robustness to noise and speed of three Optical Flow (OF) techniques, combined with both depth estimation methods. Our results show PADE is more accurate than TTC at depths between 0-12 meters and is less sensitive to noise. Our findings highlight the potential application of PADE for MAV to perform safe autonomous navigation in
unknown and unstructured environments.
Keywords: UAV
|
|
|
Patricia Marquez, Debora Gil, & Aura Hernandez-Sabate. (2012). "Error Analysis for Lucas-Kanade Based Schemes " In 9th International Conference on Image Analysis and Recognition (Vol. 7324, pp. 184–191). Lecture Notes in Computer Science. Springer-Verlag Berlin Heidelberg.
Abstract: Optical flow is a valuable tool for motion analysis in medical imaging sequences. A reliable application requires determining the accuracy of the computed optical flow. This is a main challenge given the absence of ground truth in medical sequences. This paper presents an error analysis of Lucas-Kanade schemes in terms of intrinsic design errors and numerical stability of the algorithm. Our analysis provides a confidence measure that is naturally correlated to the accuracy of the flow field. Our experiments show the higher predictive value of our confidence measure compared to existing measures.
Keywords: Optical flow, Confidence measure, Lucas-Kanade, Cardiac Magnetic Resonance
|
|
|
Albert Andaluz, Francesc Carreras, Cristina Santa Marta, & Debora Gil. (2012). "Myocardial torsion estimation with Tagged-MRI in the OsiriX platform " In Wiro Niessen(Erasmus MC) and Marc Modat(UCL) (Ed.), ISBI Workshop on Open Source Medical Image Analysis software. IEEE.
Abstract: Myocardial torsion (MT) plays a crucial role in the assessment of the functionality of the
left ventricle. For this purpose, the IAM group at the CVC has developed the Harmonic Phase Flow (HPF) plugin for the Osirix DICOM platform . We have validated its funcionalty on sequences acquired using different protocols and including healthy and pathological cases. Results show similar torsion trends for SPAMM acquisitions, with pathological cases introducing expected deviations from the ground truth. Finally, we provide the plugin free of charge at http://iam.cvc.uab.es
|
|
|
Patricia Marquez, Debora Gil, & Aura Hernandez-Sabate. (2013). "Evaluation of the Capabilities of Confidence Measures for Assessing Optical Flow Quality " In ICCV Workshop on Computer Vision in Vehicle Technology: From Earth to Mars (pp. 624–631).
Abstract: Assessing Optical Flow (OF) quality is essential for its further use in reliable decision support systems. The absence of ground truth in such situations leads to the computation of OF Confidence Measures (CM) obtained from either input or output data. A fair comparison across the capabilities of the different CM for bounding OF error is required in order to choose the best OF-CM pair for discarding points where OF computation is not reliable. This paper presents a statistical probabilistic framework for assessing the quality of a given CM. Our quality measure is given in terms of the percentage of pixels whose OF error bound can not be determined by CM values. We also provide statistical tools for the computation of CM values that ensures a given accuracy of the flow field.
|
|
|
A. M. Here, B. C. Lopez, Debora Gil, J. J. Camarero, & Jordi Martinez-Vilalta. (2013). "A new software to analyse wood anatomical features in conifer species " In International Symposium on Wood Structure in Plant Biology and Ecology.
Abstract: International Symposium on Wood Structure in Plant Biology and Ecology
|
|