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Abstract
In real-world problems, it is mandatory to design a termination condition for

Evolutionary Algorithms (EAs) ensuring stabilization close to the unknown opti-
mum. Distribution-based quantities are good candidates as far as suitable parame-
ters are used. A main limitation for application to real-world problems is that such
parameters strongly depend on the topology of the objective function, as well as,
the EA paradigm used.

We claim that the termination problem would be fully solved if we had a model
measuring to what extent a distribution-based quantity asymptotically behaves like
the solution accuracy. We present a regression-prediction model that relates any
two given quantities and reports if they can be statistically swapped as termination
conditions. Our framework is applied to two issues. First, exploring if the param-
eters involved in the computation of distribution-based quantities influence their
asymptotic behavior. Second, to what extent existing distribution-based quantities
can be asymptotically exchanged for the accuracy of the EA solution.

Keywords. Evolutionary Computation Convergence, Termination Conditions,
Statistical Inference

Introduction

Evolutionary Algorithms (EAs) are a class of stochastic optimization methods that simu-
late the process of natural evolution [1]. EAs maintain a population of possible solutions
that evolve according to rules of selection and other operators, such as recombination and
mutation. By their ability to optimizing non-analytic multi-modal functions, EAs have
been successfully applied to a wide range of real life problems [2,3,4].

As any iterative technique, EA requires a stop criterion. Unlike optimization meth-
ods evolving a single initial value (which rely on real analysis theory), by their stochastic
nature, there is not a solid mathematical theory ensuring convergence of evolutionary
methodologies in general [5,1]. The simplest (an most extended [5,6,7]) stopping crite-
rion consists in reaching a number of iterations or function evaluations. This stopping
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criterion is not useful by itself (the number of iterations that guarantee convergence sig-
nificantly varies across problems [5]), though it can be necessary when used in addition
with alternative criteria to ensure that the algorithm stops [8].

Existing approaches defining alternative termination conditions [9,10] address the
definition of a quantity reflecting the amount of change between consecutive iterations
and the condition that such quantity should fulfill. Two different termination conditions
are considered in the literature. Terminate either if the measure of the amount of change
is below a given threshold or in the case that such measure is below a threshold for a
number of generations. Concerning the amount of change, among the quantities reported
in the literature [8,5], distribution-based are the best suited. These quantities measure
the distribution of a given percentage of the (best) evolving population. They compare
to the accuracy of the solution (distance to the optimum) in terms of number of function
executions, as far as suitable parameters are set [8].

Two different sets of parameters are involved in distribution-based termination con-
ditions. On one hand, the parameters used for the termination condition itself: threshold
and number of generations. On the other hand, those involved in the computation of the
distribution quantity: percentage of the population used and whether individuals are se-
lected among the best ones or randomly. A main limitation for application to real-world
problems is that the above parameters strongly depend on the topology of the objective
function and the EA paradigm used [8].

The goal of this work is twofold. Firstly, determining if the parameters involved in
the computation of distribution-based quantities influence the behavior of the termination
condition. Secondly, exploring if the asymptotic behavior of distribution-based quantities
relates to the accuracy of the EA solution. We propose posing the termination problem
in statistical inference terms and introduces a general regression-prediction model for
determining if two quantities behave equally. We use our model to compare several types
of distribution-based quantities reported in the literature [8]. Our experiments conclude
that the distribution-based parameters (percentage and selection) do not influence their
asymptotic behavior and indicate that the maximum distance to the best individual might
be the best choice in terms of computational efficiency and capability of predicting EA
accuracy.

This paper is organized as follows. Section 1 describes the existent distribution-
based termination conditions for EA algorithms. In section 2 we give the statiscal infer-
ence framework. In section 3 we describe the experiments carried out and in section 4
we report the statiscal results. Finally section 5 concludes the paper.

1. Distribution-based Stopping Criteria

A termination condition is given by a quantity reflecting the amount of change between
consecutive iterations and the conditon that such quantity should fullfill. Regarding the
quantity reflecting the amount of change we have considered distributed-based quantities.
Such quantities measure the distribution of a given percentage of the (best) evolving
population. Following the literature [8], we have considered:

1. Maximum Distance (MxD). It is given by the maximum distance of the popula-
tion to the best individual.



2. Population Variability (Std). It is the maximum standard deviation of the pop-
ulation.

Both quantities can be computed using all individuals or considering only a percent-
age p of the individuals. These percentage of the individuals can be randomly sampled
over the whole population or selected among the best individuals. Given these defini-
tions, for each distribution-based quantity, two different computational procedures can
be considered:

1. Percentage p over randomly sampled individuals. It will be indicated by the suffix
Propp.

2. Percentage p over the best individuals. It will be be indicated by the suffix
BestPropp. We note that, in this case, the population must be sorted before
computing the measure.

We note that the combination of the distribution-based quantities with the two
computational procedures described above give four generic alternative quantities:
MaxDPropp, StdPropp, MaxDBestPropp, StdBestPropp. From now on, we will
note by AltCrit any of these quantities.

Concerning termination conditions, we have the following two:

1. Absolut Threshold. The algorithm terminates if the distribution-based quantity
is below a given threshold. This condition requires knowing the expected ranges
of the distribution-based quantity in order to set the appropriate threshold. Be-
sides it does not guarantee that EA has reached a local minimum.

2. Stabilization. The algorithm terminates if the distribution-based quantity is be-
low a given threshold for a number of consecutive generations. This condition
is equivalent to have differences between consecutive iterations below a given
threshold. On one hand, the latter threshold is independent of the ranges of the
distribution-based quantity. On the other hand, this condition ensures that the
distribution-based quantity has stabilized and, thus, that EA does not evolve any-
more since a local minimum has been attained.

A termination condition is suitable if it compares to the accuracy of the EA solution.
The distance to the (known) function minimum is our gold-standard reference conver-
gence criterion, given that is directly associated to the algorithm accuracy. This criterion
can only be computed if the optimum of the test function is known and, thus, is useless in
real-world problems. We compute it as the maximum distance to the function minimum
of a certain percentage p of the individuals [8] and note it by RefCrit.

Our final goal is to control (predict) the values taken by RefCrit from the values
taken by the alternative measure AltCrit. Previous to the latter, we should analyze the
influence that the different computational procedures may have on the distribution-based
measures. In inference statistics, this can be achieved by relating quantities using a re-
gression model.

2. Inference Model

Given a sampling of two random variables (x and y), the linear regression of y (response
variable) over x (explicative variable) is formulated as:



yi = β0 + β1xi + εi (1)

for xi, yi the sampling of x and y and εi an uncorrelated random error following a
multivariate normal distribution, N(0,Σ2) of zero mean and variance Σ2 = σ2Id.

The parameters of the regression model (1) are the regression coefficients β =
(β0, β1) and the error variance σ2. The regression coefficients describe the way the two
variables relate, while the variance indicates the accuracy of the model and, thus, mea-
sures to what extent x can predict y.

In the case of exploring equivalence among AltCrit, the inference model would be:

AltCrit1i = β0 + β1AltCrit2i + εi (2)

for AltCrit1i, AltCrit2i the values of two different AltCrit obtained at the i-th itera-
tion. In the case of relating AltCrit to RefCrit, our model would be:

RefCriti = β0 + β1AltCriti + εi (3)

for RefCriti, AltCriti the values of RefCrit and AltCrit obtained at the i-th itera-
tion.

For a sample of length N , the regression coefficients, β̂ = (β̂0, β̂1), are computed
by Least Squares Estimation (LSE) as:

β̂ = (XTX)−1XTY (4)

for X =

1 x1
...

...
1 xN

, Y = (y1, . . . , yN ) and T denoting the transpose of a matrix. The

differences between estimated responses, ŷi = β̂0 + β̂1xi, and observed responses yi:

ei = yi − ŷi (5)

are called residuals. Their square sum provides an estimation of the error variance:

SR = σ̂2 =

∑
e2i

n− 2
(6)

Due to a decrease in the population sparseness at advance stages of EA, the hetero-
cedasticity and Gaussianity assumption are not satisfied. A monotonous increase in σ2 is
usually solved by taking logarithms in both variables [11].

From now on, the values of RefCrit and AltCrit will be assumed to be in loga-
rithmic scale for the inference model:

log(yi) = β0 + β1log(xi) + εi (7)

We note that, by taking exponentials, the regression model in the original scale is poly-
nomial with multiplicative errors:



yi = eβ0xβ1

i e
εi (8)

Previous to any kind of inference, it is mandatory to verify that the estimated pa-
rameters make sense. That is, whether it really exists a linear relation between x and y.
By the Gauss-Markov theorem, such linear relation can be statistically checked using the
following T-test [12]

TM : H0 : β1 = 0 , H1 : β1 6= 0 (9)

where a p − value close to zero (below α) ensures the validity of the linear model with
a confidence (1− α)100%.

We note that if the slope β1 ≈ 1, then both quantities stabilize at the same time and,
thus,they are equivalent under the stabilization termination condition. This requirement
can be statistically checked using the following unilateral T-tests:

TP1 : H0 : β1 − 1 ≥ ε , H1 : β1 − 1 < ε
TP2 : H0 : β1 − 1 ≤ −ε , H1 : β1 − 1 > −ε (10)

a p value close to zero (below α) for both tests ensures that |β1−1| ≤ εwith a confidence
(1 − α)100%. The minimum ε ensuring rejection of TP1 and TP2 is given by |1 −
max(|CI(β1)|)| forCI(β1) the (1−α)-confidence interval for the regression slope. The
higher ε we have, the least stabilization equivalence.

3. Experimental Settings

In order to compare the different distribution-based quantities, we have considered six
well-known test functions [13] having a minimum at zero:

1. Esphere:

f1(x) =

n∑
i=1

x2i

2. Rosenbrock:

f2(x) =

n−1∑
i=1

[100(xi+1 − x2i )2 + (xi − 1)2]

3. Rastrigin:

f3(x) =

n∑
i=1

[x2i − 10 cos(2πxi + 10)]

4. Griewangk:

f4(x) =

n∑
i=1

x2i −
n∏
i=1

cos(
xi√
i
) + 1



5. Ackley:

f5(x) = 20 + e− 20e−0.2
√

1
2

∑n
i=1 x

2
i − e 1

2

∑n
i=1 cos(2πxi)

6. Easom:

f7(x) = − cosx1. cosx2.
exp(−((x1 − π)2 + (x1 − π)2))

We have used a Differential Evolution (DE) technique for the minimization task.
Differential evolution is a real parameter encoding evolutionary algorithm for global
optimization over continuous spaces [14,15]. In this paper, we use the 3-parameter DE1
scheme [14] for solving DE. For a real search space of dimension D, the population is
randomly initialized with ND vectors (for ND the first algorithm parameter). Each vector
v in the population is evolved by mutation and recombination operators. Given a mutation
rate F ∈ [0, 2] (second parameter of the algorithm), the mutation operator produces a
new vector vm by adding a vector difference of two randomly chosen population vectors
v1 and v2 to another randomly chosen vector v3:

vm = v1 + F (v2− v3) (11)

For the recombination step, a new vector vf is created from the mutation vector by means
of a combination rate CR (third parameter of the algorithm) as follows:

vfi =

{
vmi if ri < CR or i = k
vi otherwise (12)

for vfi the i-th component of vf and ri ∈ [0, 1] a random number and k a random number
uniformly distributed in [1, D]. Finally a selection operator is applied. The vector vf and
the initial vector v are compared and the vector that better fits the objective function is
selected and remains in the next population. This process is iteratively repeated until a
stopping criterion is reached. Following the literature [15], we have chosen the following
values for DE parameters: D=2, ND=20, F=0.9, CR=0.5. For each test function, we have
executed 100 trails of the algorithm during 10.000 iterations each one.

Two different experiments have been carried out:

1. Computation of Distribution-based Quantities. A first compulsory step before
exploring if any AltCrit can substitute RefCrit is checking if the computation
of distribution-based quantities using different parameter settings yields equiva-
lent quantities. In the case such equivalency held, it would imply that MxD and
Std can be computed directly from EA current population. Otherwise, EA out-
put should be adapted in order to conform to the most adequate proportion and
selection strategy.

2. Capability for Substituting the Reference Criterion. Under the assumption
that any parameters can be used for computing AltCrit, we can compare it to
RefCrit using the natural setting for DE: a percentage (p = 30%) of the whole
population.

For both experiments, we have assessed the validity of the linear model in logarith-
mic scale (given by SR and TM test), as well as, its stabilization equivalence (given by
the ε rejecting TPi, i = 1, 2).



4. Experiments and Results

4.1. Computation of Distribution-based Quantities

Tables 1 and 2 report the estimation of the model parameters (the regression coefficients
β̂0, β̂1 and the residual variance SR), the p-value of the model verification T-test and
the stabilization equivalence tolerance ε. Table 1 shows results for the comparison be-
tween best and randomly selected individuals for the proportion p = 60% and the two
distribution-based quantities. Table 2 shows results for the comparison across propor-
tions for MxD.

For all cases, there is a clear linear relation between the different quantities (with
p close to the working precision). We can assume that β̂1 is close to 1 with a tolerance
ε ≈ 10−2 for dependency on the best individuals (table 1) and ε ≈ 10−1 for dependency
on proportions (table 2). Therefore, all computational strategies are equivalent for the
stabilization termination condition. Besides, the sign of the constant term β̂0 gives the
following (expected) inequalities. For any percentage p, we have:

MxDBestPropp <MxDPropp and StdBestPropp < StdPropp

and for increasing proportions:

MxDProp30 <MxDProp60 ∼MxDProp100

The above inequalities indicate that best individuals are a more compact cluster and
that the estimation of the population dispersion increases with the number of samples
considered.

MxD Std
TM β̂1 β̂0 SR ε TM β̂1 β̂0 SR ε

Esphere ≤ 10−30 0.99 0.75 0.11 0.00002 ≤ 10−30 1.00 0.62 0.07 0.00005

Rosenbrock ≤ 10−30 0.99 0.51 0.14 0.00274 ≤ 10−30 0.99 0.43 0.09 0.00259

Rastrigin ≤ 10−30 1.03 0.80 0.10 0.04029 ≤ 10−30 1.03 0.74 0.08 0.03576

Griewangk ≤ 10−30 1.03 0.62 0.33 0.03243 ≤ 10−30 1.02 0.59 0.27 0.02988

Ackley ≤ 10−30 1.02 0.99 0.10 0.02530 ≤ 10−30 1.02 0.84 0.07 0.02094

Easom ≤ 10−30 1.05 1.06 0.05 0.05647 ≤ 10−30 1.04 0.90 0.03 0.04537

Table 1. Comparison between best or random selection for a percentage p = 60% of the population.

4.2. Capability for Substituting the Reference Criterion

Given that the setting used for the computation of alternative quantities is irrelevant for
termination by stabilization, we have computed MxD and Std for a uniform sampling of
p = 30% of the population. Table 3 reports the estimation of the model parameters (the
regression coefficients β̂0, β̂1 and the residual variance SR), the p-value of the model
verification T-test and the stabilization equivalence tolerance ε. We report values for each
test function (rows) and alternative quantity (columns). For all cases, there is a clear lin-



Proportion p=30% versus p=60% Proportion p=30% versus p=100%
TM β̂1 β̂0 SR ε TM β̂1 β̂0 SR ε

Esphere ≤ 10−30 0.99 −0.5 6.32 0.00081 ≤ 10−30 1.00 −0.6 5.23 0.00344

Rosenbrock ≤ 10−30 0.97 −0.4 4.85 0.01825 ≤ 10−30 0.96 −0.4 5.36 0.03187

Rastrigin ≤ 10−30 0.99 −0.2 0.48 0.00804 ≤ 10−30 0.98 −0.6 0.42 0.02287

Griewangk ≤ 10−30 0.95 −1.0 3.36 0.04759 ≤ 10−30 0.80 −3.4 11.75 0.19316

Ackley ≤ 10−30 0.99 -0.1 0.63 0.00212 ≤ 10−30 0.99 −0.2 0.53 0.00113

Easom ≤ 10−30 0.99 -0.3 0.40 0.01058 ≤ 10−30 0.99 −0.3 0.48 0.00611

Table 2. Comparison across percentages for individuals randomly chosen in the computation of MxD.

MxDProp30 StdProp30

TM β̂1 β̂0 SR ε TM β̂1 β̂0 SR ε

Esfere ≤ 10−32 1.000 -0.183 0.05 0.000 ≤ 10−32 1.000 0.685 0.03 0.000

Rosenbrock ≤ 10−32 1.002 -0.122 0.09 0.002 ≤ 10−32 1.003 0.761 0.05 0.003

Rastrigin ≤ 10−32 1.006 -0.207 0.06 0.006 ≤ 10−32 1.007 0.686 0.03 0.006

Griewangk ≤ 10−32 1.009 -0.1714 0.02 0.007 ≤ 10−32 1.008 0.7021 0.01 0.007

Ackley ≤ 10−32 1.004 -0.148 0.06 0.004 ≤ 10−32 1.004 0.725 0.03 0.004

Easom ≤ 10−32 1.011 -0.143 0.04 0.011 ≤ 10−32 1.011 0.766 0.03 0.011

Table 3. Comparison to RefCrit.

ear relation between accuracy and the alternative quantities (with p close to the work-
ing precision). Besides the goodness-of-fit is excellent, given that SR is extremely small
compared to the variable ranges.

Concerning the relation between the two variables, it is worth noticing two aspects.
Firstly, we observe that the estimated slope β̂1 is close to 1 for all cases with tolerance
ε ≤ 0.11 for both quantities MxD and Std. This implies that the relation in logarithmic
scale is a translation of the identity and the regression model in the original scale is also
linear. Secondly, the constant coefficients β̂0 are sorted as follows:

β̂0(MxDProp) ≤ 0 ≤ β̂0(StdProp)

The above commented points indicate that there might be the following tendency:

StdProp ≤ RefCrit ≤MxDProp

This already suggests that the value of maximum distances itself might guarantee an
upper bound for the EA accuracy.

5. Conclusions and Future work

A main challenge in Evolutionary Algorithms (EAs) is determining a termination con-
dition ensuring stabilization close to the optimum in real-world applications. Although
distribution-based conditions are the best suited, a major concern is setting appropiate
parameters for their computation. In this context, this paper addresses EA termination



condition in terms of statistical inference and contributes in two issues. First, it explores
if the parameters involved in the computation of distribution-based quantities influence
the behavior of the termination condition. Second, it reports a preliminary study on the
relation between such termination conditions and the accuracy of the EA solution.

According to our experiments on several known test functions, the following conclu-
sions can be derived. On one hand, there is a high correlation among the different com-
putational procedures for distribution-based quantities and they behave equally with re-
spect their stabilization. Therefore, we conclude that in order to use a quantity behaving
as the solution accuracy we can choose, among the various computational procedures,
the most convenient for the particular EA paradigm we are running. On the other hand,
there is a strong linear relation between distribution-based quantities and the distance to
the optimum. From our analysis, we conclude that quantities based on maximum dis-
tances have the highest concordance to EA accuracy, in the sense that they guarantee an
upper bound for the accuracy. Thus, they are the best candidates for terminating EA in
real-world problems.

We consider that there are some issues that should be further developed. The test
functions used are a small set of benchmarking data sets (we cover two out of the five
categories described in [16]) and only 2-D problems have been solved. Enlarging the test
function data set including groups of functions with specific key features [16] is work
currently under development. However, the functions used include three properties (mul-
timodality, global structure and scalability) reported in a recent study [17] to have a high
influence in the performance of EA’s. Regarding size, although it definitely influences
convergence rate (more iterations of EA are required [16]), this is independent of the
relationship between RefCrit and AltCrit. Thus, size is not a limitation for the prediction
model, which links convergence rate with population stability.

In this study we have restricted to DE algorithm. We are currently enlarging EA
methods in order to cover existing EA paradigms: genetic algorithms [18], evolutionary
strategies [19], particle Swarm optimization [20], among others. Nevertheless, we do not
expect any significant changes in our conclusions since DE already presents the main
features of EA [21].

Finally, in our experimental setting test functions have been studied separately. We
consider that the influence of the test function should be taken into account, so that the
inference can be done independently of the function features. This will be studied by
using generalized regression models including random effects [22] modelling the impact
of the test function group.
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